LogoLogo
latest
latest
  • Introduction
  • Basics
    • Concepts
      • Pinot storage model
      • Architecture
      • Components
        • Cluster
          • Tenant
          • Server
          • Controller
          • Broker
          • Minion
        • Table
          • Segment
            • Deep Store
            • Segment threshold
            • Segment retention
          • Schema
          • Time boundary
        • Pinot Data Explorer
    • Getting Started
      • Running Pinot locally
      • Running Pinot in Docker
      • Quick Start Examples
      • Running in Kubernetes
      • Running on public clouds
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Create and update a table configuration
      • Batch import example
      • Stream ingestion example
      • HDFS as Deep Storage
      • Troubleshooting Pinot
      • Frequently Asked Questions (FAQs)
        • General
        • Pinot On Kubernetes FAQ
        • Ingestion FAQ
        • Query FAQ
        • Operations FAQ
    • Indexing
      • Bloom filter
      • Dictionary index
      • Forward index
      • FST index
      • Geospatial
      • Inverted index
      • JSON index
      • Native text index
      • Range index
      • Star-tree index
      • Text search support
      • Timestamp index
      • Vector index
    • Release notes
      • 1.3.0
      • 1.2.0
      • 1.1.0
      • 1.0.0
      • 0.12.1
      • 0.12.0
      • 0.11.0
      • 0.10.0
      • 0.9.3
      • 0.9.2
      • 0.9.1
      • 0.9.0
      • 0.8.0
      • 0.7.1
      • 0.6.0
      • 0.5.0
      • 0.4.0
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • Connect to Streamlit
      • Connect to Dash
      • Visualize data with Redash
      • GitHub Events Stream
  • For Users
    • Query
      • Querying Pinot
      • Query Syntax
        • Explain Plan (Single-Stage)
        • Filtering with IdSet
        • GapFill Function For Time-Series Dataset
        • Grouping Algorithm
        • JOINs
        • Lookup UDF Join
      • Query Options
      • Query Quotas
      • Query using Cursors
      • Multi-stage query
        • Understanding Stages
        • Stats
        • Optimizing joins
        • Join strategies
          • Random + broadcast join strategy
          • Query time partition join strategy
          • Colocated join strategy
          • Lookup join strategy
        • Hints
        • Operator Types
          • Aggregate
          • Filter
          • Join
          • Intersect
          • Leaf
          • Literal
          • Mailbox receive
          • Mailbox send
          • Minus
          • Sort or limit
          • Transform
          • Union
          • Window
        • Stage-Level Spooling
      • Explain plan
    • APIs
      • Broker Query API
        • Query Response Format
      • Broker GRPC API
      • Controller Admin API
      • Controller API Reference
    • External Clients
      • JDBC
      • Java
      • Python
      • Golang
    • Tutorials
      • Use OSS as Deep Storage for Pinot
      • Ingest Parquet Files from S3 Using Spark
      • Creating Pinot Segments
      • Use S3 as Deep Storage for Pinot
      • Use S3 and Pinot in Docker
      • Batch Data Ingestion In Practice
      • Schema Evolution
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Dependency Management
      • Update documentation
    • Advanced
      • Data Ingestion Overview
      • Ingestion Aggregations
      • Ingestion Transformations
      • Null value support
      • Use the multi-stage query engine (v2)
      • Advanced Pinot Setup
    • Plugins
      • Write Custom Plugins
        • Input Format Plugin
        • Filesystem Plugin
        • Batch Segment Fetcher Plugin
        • Stream Ingestion Plugin
    • Design Documents
      • Segment Writer API
  • For Operators
    • Deployment and Monitoring
      • Set up cluster
      • Server Startup Status Checkers
      • Set up table
      • Set up ingestion
      • Decoupling Controller from the Data Path
      • Segment Assignment
      • Instance Assignment
      • Rebalance
        • Rebalance Servers
          • Examples and Scenarios
        • Rebalance Brokers
        • Rebalance Tenant
      • Separating data storage by age
        • Using multiple tenants
        • Using multiple directories
      • Pinot managed Offline flows
      • Minion merge rollup task
      • Consistent Push and Rollback
      • Access Control
      • Monitoring
      • Tuning
        • Tuning Default MMAP Advice
        • Real-time
        • Routing
        • Query Routing using Adaptive Server Selection
        • Query Scheduling
      • Upgrading Pinot with confidence
      • Managing Logs
      • OOM Protection Using Automatic Query Killing
      • Pause ingestion based on resource utilization
    • Command-Line Interface (CLI)
    • Configuration Recommendation Engine
    • Tutorials
      • Authentication
        • Basic auth access control
        • ZkBasicAuthAccessControl
      • Configuring TLS/SSL
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Monitor Pinot using Prometheus and Grafana
      • Performance Optimization Configurations
      • Segment Operations Throttling
      • Reload a table segment
  • Configuration Reference
    • Cluster
    • Controller
    • Broker
    • Server
    • Table
    • Ingestion
    • Schema
    • Database
    • Ingestion Job Spec
    • Monitoring Metrics
    • Plugin Reference
      • Stream Ingestion Connectors
      • VAR_POP
      • VAR_SAMP
      • STDDEV_POP
      • STDDEV_SAMP
    • Dynamic Environment
  • Manage Data
    • Import Data
      • SQL Insert Into From Files
      • Upload Pinot segment Using CommandLine
      • Batch Ingestion
        • Spark
        • Flink
        • Hadoop
        • Backfill Data
        • Dimension table
      • Stream Ingestion
        • Ingest streaming data from Apache Kafka
        • Ingest streaming data from Amazon Kinesis
        • Ingest streaming data from Apache Pulsar
        • Configure indexes
        • Stream ingestion with CLP
      • Upsert and Dedup
        • Stream ingestion with Upsert
        • Segment compaction on upserts
        • Stream ingestion with Dedup
      • Supported Data Formats
      • File Systems
        • Amazon S3
        • Azure Data Lake Storage
        • HDFS
        • Google Cloud Storage
      • Complex Type (Array, Map) Handling
        • Complex Type Examples (Unnest)
      • Ingest records with dynamic schemas
  • Functions
    • Aggregation Functions
    • Transformation Functions
    • Array Functions
    • Funnel Analysis Functions
    • Hash Functions
    • JSON Functions
    • User-Defined Functions (UDFs)
    • URL Functions
    • Unique Count and cardinality Estimation Functions
  • Window Functions
  • (Deprecating) Function List
    • ABS
    • ADD
    • ago
    • EXPR_MIN / EXPR_MAX
    • ARRAY_AGG
    • arrayConcatDouble
    • arrayConcatFloat
    • arrayConcatInt
    • arrayConcatLong
    • arrayConcatString
    • arrayContainsInt
    • arrayContainsString
    • arrayDistinctInt
    • arrayDistinctString
    • arrayIndexOfInt
    • arrayIndexOfString
    • ARRAYLENGTH
    • arrayRemoveInt
    • arrayRemoveString
    • arrayReverseInt
    • arrayReverseString
    • arraySliceInt
    • arraySliceString
    • arraySortInt
    • arraySortString
    • arrayUnionInt
    • arrayUnionString
    • AVGMV
    • Base64
    • caseWhen
    • ceil
    • CHR
    • codepoint
    • concat
    • count
    • COUNTMV
    • COVAR_POP
    • COVAR_SAMP
    • day
    • dayOfWeek
    • dayOfYear
    • DISTINCT
    • DISTINCTCOUNT
    • DISTINCTCOUNTMV
    • DISTINCT_COUNT_OFF_HEAP
    • SEGMENTPARTITIONEDDISTINCTCOUNT
    • DISTINCTCOUNTBITMAP
    • DISTINCTCOUNTBITMAPMV
    • DISTINCTCOUNTHLL
    • DISTINCTCOUNTHLLMV
    • DISTINCTCOUNTRAWHLL
    • DISTINCTCOUNTRAWHLLMV
    • DISTINCTCOUNTSMARTHLL
    • DISTINCTCOUNTHLLPLUS
    • DISTINCTCOUNTULL
    • DISTINCTCOUNTTHETASKETCH
    • DISTINCTCOUNTRAWTHETASKETCH
    • DISTINCTSUM
    • DISTINCTSUMMV
    • DISTINCTAVG
    • DISTINCTAVGMV
    • DIV
    • DATETIMECONVERT
    • DATETRUNC
    • exp
    • FIRSTWITHTIME
    • FLOOR
    • FrequentLongsSketch
    • FrequentStringsSketch
    • FromDateTime
    • FromEpoch
    • FromEpochBucket
    • FUNNELCOUNT
    • FunnelCompleteCount
    • FunnelMaxStep
    • FunnelMatchStep
    • GridDistance
    • Histogram
    • hour
    • isSubnetOf
    • JSONFORMAT
    • JSONPATH
    • JSONPATHARRAY
    • JSONPATHARRAYDEFAULTEMPTY
    • JSONPATHDOUBLE
    • JSONPATHLONG
    • JSONPATHSTRING
    • jsonextractkey
    • jsonextractscalar
    • LAG
    • LASTWITHTIME
    • LEAD
    • length
    • ln
    • lower
    • lpad
    • ltrim
    • max
    • MAXMV
    • MD5
    • millisecond
    • min
    • minmaxrange
    • MINMAXRANGEMV
    • MINMV
    • minute
    • MOD
    • mode
    • month
    • mult
    • now
    • percentile
    • percentileest
    • percentileestmv
    • percentilemv
    • percentiletdigest
    • percentiletdigestmv
    • percentilekll
    • percentilerawkll
    • percentilekllmv
    • percentilerawkllmv
    • quarter
    • regexpExtract
    • regexpReplace
    • remove
    • replace
    • reverse
    • round
    • roundDecimal
    • ROW_NUMBER
    • rpad
    • rtrim
    • second
    • sha
    • sha256
    • sha512
    • sqrt
    • startswith
    • ST_AsBinary
    • ST_AsText
    • ST_Contains
    • ST_Distance
    • ST_GeogFromText
    • ST_GeogFromWKB
    • ST_GeometryType
    • ST_GeomFromText
    • ST_GeomFromWKB
    • STPOINT
    • ST_Polygon
    • strpos
    • ST_Union
    • SUB
    • substr
    • sum
    • summv
    • TIMECONVERT
    • timezoneHour
    • timezoneMinute
    • ToDateTime
    • ToEpoch
    • ToEpochBucket
    • ToEpochRounded
    • TOJSONMAPSTR
    • toGeometry
    • toSphericalGeography
    • trim
    • upper
    • Url
    • UTF8
    • VALUEIN
    • week
    • year
    • Extract
    • yearOfWeek
    • FIRST_VALUE
    • LAST_VALUE
    • ST_GeomFromGeoJSON
    • ST_GeogFromGeoJSON
    • ST_AsGeoJSON
  • Reference
    • Single-stage query engine (v1)
    • Multi-stage query engine (v2)
    • Troubleshooting
      • Troubleshoot issues with the multi-stage query engine (v2)
      • Troubleshoot issues with ZooKeeper znodes
      • Realtime Ingestion Stopped
  • RESOURCES
    • Community
    • Team
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • Tableau
    • Trino
    • ThirdEye
    • Superset
    • Presto
    • Spark-Pinot Connector
  • Contributing
    • Contribute Pinot documentation
    • Style guide
Powered by GitBook
On this page
  • Deep dive into stages
  • Extracting Stages from Query Plans

Was this helpful?

Edit on GitHub
Export as PDF
  1. For Users
  2. Query
  3. Multi-stage query

Understanding Stages

Learn more about multi-stage stages and how to extract stages from query plans.

PreviousMulti-stage queryNextStats

Last updated 11 months ago

Was this helpful?

Deep dive into stages

As explained in the reference documentation, the multi-stage query engine breaks down a query into multiple stages. Each stage corresponds to a subset of the query plan and is executed independently. Stages are connected in a tree-like structure where the output of one stage is the input to another stage. The stage that is at the root of the tree sends the final results to the client. The stages that are at the leaves of the tree read from the tables. The intermediate stages process the data and send it to the next stage.

When the broker receives a query, it generates a query plan. This is a tree-like structure where each node is an operator. The plan is then optimized, moving and changing nodes to generate a plan that is semantically equivalent (it returns the same rows) but more efficient. During this phase the broker colors the nodes of the plan, assigning them to a stage. The broker also assigns a parallelism to each stage and defines which servers are going to execute each stage. For example, if a stage has a parallelism of 10, then at most 10 servers will execute that stage in parallel. One single server can execute multiple stages in parallel and it can even execute multiple instances of the same stage in parallel.

Stages are identified by their stage ID, which is a unique identifier for each stage. In the current implementation the stage ID is a number and the root stage has a stage ID of 0, although this may change in the future.

The current implementation has some properties that are worth mentioning:

  • The leaf stages execute a slightly modified version of the single-stage query engine. Therefore these stages cannot execute joins or aggregations, which are always executed in the intermediate stages.

  • Intermediate stages execute operations using a new query execution engine that has been created for the multi-stage query engine. This is why some of the functions that are supported in the single-stage query engine are not supported in the multi-stage query engine and vice versa.

  • An intermediate stage can only have one join, one window function or one set operation. If a query has more than one of these operations, the broker will create multiple stages, each with one of these operations.

Extracting Stages from Query Plans

As explained in , you can use the EXPLAIN PLAN syntax to obtain the logical plan of a query. This logical plan can be used to extract the stages of the query.

For example, if the query is:

explain plan for
select customer.c_address, orders.o_shippriority
from customer
join orders
    on customer.c_custkey = orders.o_custkey
limit 10

A possible output of the EXPLAIN PLAN command is:

LogicalSort(offset=[0], fetch=[10])
  PinotLogicalSortExchange(distribution=[hash], collation=[[]], isSortOnSender=[false], isSortOnReceiver=[false])
    LogicalSort(fetch=[10])
      LogicalProject(c_address=[$0], o_shippriority=[$3])
        LogicalJoin(condition=[=($1, $2)], joinType=[inner])
          PinotLogicalExchange(distribution=[hash[1]])
            LogicalProject(c_address=[$4], c_custkey=[$6])
              LogicalTableScan(table=[[default, customer]])
          PinotLogicalExchange(distribution=[hash[0]])
            LogicalProject(o_custkey=[$5], o_shippriority=[$10])
              LogicalTableScan(table=[[default, orders]])

As it happens with all queries, the logical plan forms a tree-like structure. In this default explain format, the tree-like structure is represented with indentation. The root of the tree is the first line, which is the last operator to be executed and marks the root stage. The boundary between stages are the PinotLogicalExchange operators. In the example above, there are four stages:

  • The root stage starts with the LogicalSort operator in the root of operators and ends with the PinotLogicalSortExchange operator. This is the last stage to be executed and the only one that is executed in the broker, which will directly send the result to the client once it is computed.

  • The next stage starts with this PinotLogicalSortExchange operator and includes the LogicalSort operator, the LogicalProject operator, the LogicalJoin operator and the two PinotLogicalExchange operators. This stage clearly is not a root stage and it is not reading data from the segments, so it is not a leaf stage. Therefore it has to be an intermediate stage.

  • The join has two children, which are the PinotLogicalExchange operators. In this specific case, both sides are very similar. They start with a PinotLogicalExchange operator and end with a LogicalTableScan operator. All stages that end with a LogicalTableScan operator are leaf stages.

Now that we have identified the stages, we can understand what each stage is doing by .

Multi-stage query engine
Explain Plan (Multi-Stage)
understanding multi-stage explain plans