LogoLogo
latest
latest
  • Introduction
  • Basics
    • Concepts
      • Pinot storage model
      • Architecture
      • Components
        • Cluster
          • Tenant
          • Server
          • Controller
          • Broker
          • Minion
        • Table
          • Segment
            • Deep Store
            • Segment threshold
            • Segment retention
          • Schema
          • Time boundary
        • Pinot Data Explorer
    • Getting Started
      • Running Pinot locally
      • Running Pinot in Docker
      • Quick Start Examples
      • Running in Kubernetes
      • Running on public clouds
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Create and update a table configuration
      • Batch import example
      • Stream ingestion example
      • HDFS as Deep Storage
      • Troubleshooting Pinot
      • Frequently Asked Questions (FAQs)
        • General
        • Pinot On Kubernetes FAQ
        • Ingestion FAQ
        • Query FAQ
        • Operations FAQ
    • Indexing
      • Bloom filter
      • Dictionary index
      • Forward index
      • FST index
      • Geospatial
      • Inverted index
      • JSON index
      • Native text index
      • Range index
      • Star-tree index
      • Text search support
      • Timestamp index
      • Vector index
    • Release notes
      • 1.3.0
      • 1.2.0
      • 1.1.0
      • 1.0.0
      • 0.12.1
      • 0.12.0
      • 0.11.0
      • 0.10.0
      • 0.9.3
      • 0.9.2
      • 0.9.1
      • 0.9.0
      • 0.8.0
      • 0.7.1
      • 0.6.0
      • 0.5.0
      • 0.4.0
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • Connect to Streamlit
      • Connect to Dash
      • Visualize data with Redash
      • GitHub Events Stream
  • For Users
    • Query
      • Querying Pinot
      • Query Syntax
        • Explain Plan (Single-Stage)
        • Filtering with IdSet
        • GapFill Function For Time-Series Dataset
        • Grouping Algorithm
        • JOINs
        • Lookup UDF Join
      • Query Options
      • Query Quotas
      • Query using Cursors
      • Multi-stage query
        • Understanding Stages
        • Stats
        • Optimizing joins
        • Join strategies
          • Random + broadcast join strategy
          • Query time partition join strategy
          • Colocated join strategy
          • Lookup join strategy
        • Hints
        • Operator Types
          • Aggregate
          • Filter
          • Join
          • Intersect
          • Leaf
          • Literal
          • Mailbox receive
          • Mailbox send
          • Minus
          • Sort or limit
          • Transform
          • Union
          • Window
        • Stage-Level Spooling
      • Explain plan
    • APIs
      • Broker Query API
        • Query Response Format
      • Broker GRPC API
      • Controller Admin API
      • Controller API Reference
    • External Clients
      • JDBC
      • Java
      • Python
      • Golang
    • Tutorials
      • Use OSS as Deep Storage for Pinot
      • Ingest Parquet Files from S3 Using Spark
      • Creating Pinot Segments
      • Use S3 as Deep Storage for Pinot
      • Use S3 and Pinot in Docker
      • Batch Data Ingestion In Practice
      • Schema Evolution
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Dependency Management
      • Update documentation
    • Advanced
      • Data Ingestion Overview
      • Ingestion Aggregations
      • Ingestion Transformations
      • Null value support
      • Use the multi-stage query engine (v2)
      • Advanced Pinot Setup
    • Plugins
      • Write Custom Plugins
        • Input Format Plugin
        • Filesystem Plugin
        • Batch Segment Fetcher Plugin
        • Stream Ingestion Plugin
    • Design Documents
      • Segment Writer API
  • For Operators
    • Deployment and Monitoring
      • Set up cluster
      • Server Startup Status Checkers
      • Set up table
      • Set up ingestion
      • Decoupling Controller from the Data Path
      • Segment Assignment
      • Instance Assignment
      • Rebalance
        • Rebalance Servers
          • Examples and Scenarios
        • Rebalance Brokers
        • Rebalance Tenant
      • Separating data storage by age
        • Using multiple tenants
        • Using multiple directories
      • Pinot managed Offline flows
      • Minion merge rollup task
      • Consistent Push and Rollback
      • Access Control
      • Monitoring
      • Tuning
        • Tuning Default MMAP Advice
        • Real-time
        • Routing
        • Query Routing using Adaptive Server Selection
        • Query Scheduling
      • Upgrading Pinot with confidence
      • Managing Logs
      • OOM Protection Using Automatic Query Killing
      • Pause ingestion based on resource utilization
    • Command-Line Interface (CLI)
    • Configuration Recommendation Engine
    • Tutorials
      • Authentication
        • Basic auth access control
        • ZkBasicAuthAccessControl
      • Configuring TLS/SSL
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Monitor Pinot using Prometheus and Grafana
      • Performance Optimization Configurations
      • Segment Operations Throttling
      • Reload a table segment
  • Configuration Reference
    • Cluster
    • Controller
    • Broker
    • Server
    • Table
    • Ingestion
    • Schema
    • Database
    • Ingestion Job Spec
    • Monitoring Metrics
    • Plugin Reference
      • Stream Ingestion Connectors
      • VAR_POP
      • VAR_SAMP
      • STDDEV_POP
      • STDDEV_SAMP
    • Dynamic Environment
  • Manage Data
    • Import Data
      • SQL Insert Into From Files
      • Upload Pinot segment Using CommandLine
      • Batch Ingestion
        • Spark
        • Flink
        • Hadoop
        • Backfill Data
        • Dimension table
      • Stream Ingestion
        • Ingest streaming data from Apache Kafka
        • Ingest streaming data from Amazon Kinesis
        • Ingest streaming data from Apache Pulsar
        • Configure indexes
        • Stream ingestion with CLP
      • Upsert and Dedup
        • Stream ingestion with Upsert
        • Segment compaction on upserts
        • Stream ingestion with Dedup
      • Supported Data Formats
      • File Systems
        • Amazon S3
        • Azure Data Lake Storage
        • HDFS
        • Google Cloud Storage
      • Complex Type (Array, Map) Handling
        • Complex Type Examples (Unnest)
      • Ingest records with dynamic schemas
  • Functions
    • Aggregation Functions
    • Transformation Functions
    • Array Functions
    • Funnel Analysis Functions
    • Hash Functions
    • JSON Functions
    • User-Defined Functions (UDFs)
    • URL Functions
    • Unique Count and cardinality Estimation Functions
  • Window Functions
  • (Deprecating) Function List
    • ABS
    • ADD
    • ago
    • EXPR_MIN / EXPR_MAX
    • ARRAY_AGG
    • arrayConcatDouble
    • arrayConcatFloat
    • arrayConcatInt
    • arrayConcatLong
    • arrayConcatString
    • arrayContainsInt
    • arrayContainsString
    • arrayDistinctInt
    • arrayDistinctString
    • arrayIndexOfInt
    • arrayIndexOfString
    • ARRAYLENGTH
    • arrayRemoveInt
    • arrayRemoveString
    • arrayReverseInt
    • arrayReverseString
    • arraySliceInt
    • arraySliceString
    • arraySortInt
    • arraySortString
    • arrayUnionInt
    • arrayUnionString
    • AVGMV
    • Base64
    • caseWhen
    • ceil
    • CHR
    • codepoint
    • concat
    • count
    • COUNTMV
    • COVAR_POP
    • COVAR_SAMP
    • day
    • dayOfWeek
    • dayOfYear
    • DISTINCT
    • DISTINCTCOUNT
    • DISTINCTCOUNTMV
    • DISTINCT_COUNT_OFF_HEAP
    • SEGMENTPARTITIONEDDISTINCTCOUNT
    • DISTINCTCOUNTBITMAP
    • DISTINCTCOUNTBITMAPMV
    • DISTINCTCOUNTHLL
    • DISTINCTCOUNTHLLMV
    • DISTINCTCOUNTRAWHLL
    • DISTINCTCOUNTRAWHLLMV
    • DISTINCTCOUNTSMARTHLL
    • DISTINCTCOUNTHLLPLUS
    • DISTINCTCOUNTULL
    • DISTINCTCOUNTTHETASKETCH
    • DISTINCTCOUNTRAWTHETASKETCH
    • DISTINCTSUM
    • DISTINCTSUMMV
    • DISTINCTAVG
    • DISTINCTAVGMV
    • DIV
    • DATETIMECONVERT
    • DATETRUNC
    • exp
    • FIRSTWITHTIME
    • FLOOR
    • FrequentLongsSketch
    • FrequentStringsSketch
    • FromDateTime
    • FromEpoch
    • FromEpochBucket
    • FUNNELCOUNT
    • FunnelCompleteCount
    • FunnelMaxStep
    • FunnelMatchStep
    • GridDistance
    • Histogram
    • hour
    • isSubnetOf
    • JSONFORMAT
    • JSONPATH
    • JSONPATHARRAY
    • JSONPATHARRAYDEFAULTEMPTY
    • JSONPATHDOUBLE
    • JSONPATHLONG
    • JSONPATHSTRING
    • jsonextractkey
    • jsonextractscalar
    • LAG
    • LASTWITHTIME
    • LEAD
    • length
    • ln
    • lower
    • lpad
    • ltrim
    • max
    • MAXMV
    • MD5
    • millisecond
    • min
    • minmaxrange
    • MINMAXRANGEMV
    • MINMV
    • minute
    • MOD
    • mode
    • month
    • mult
    • now
    • percentile
    • percentileest
    • percentileestmv
    • percentilemv
    • percentiletdigest
    • percentiletdigestmv
    • percentilekll
    • percentilerawkll
    • percentilekllmv
    • percentilerawkllmv
    • quarter
    • regexpExtract
    • regexpReplace
    • remove
    • replace
    • reverse
    • round
    • roundDecimal
    • ROW_NUMBER
    • rpad
    • rtrim
    • second
    • sha
    • sha256
    • sha512
    • sqrt
    • startswith
    • ST_AsBinary
    • ST_AsText
    • ST_Contains
    • ST_Distance
    • ST_GeogFromText
    • ST_GeogFromWKB
    • ST_GeometryType
    • ST_GeomFromText
    • ST_GeomFromWKB
    • STPOINT
    • ST_Polygon
    • strpos
    • ST_Union
    • SUB
    • substr
    • sum
    • summv
    • TIMECONVERT
    • timezoneHour
    • timezoneMinute
    • ToDateTime
    • ToEpoch
    • ToEpochBucket
    • ToEpochRounded
    • TOJSONMAPSTR
    • toGeometry
    • toSphericalGeography
    • trim
    • upper
    • Url
    • UTF8
    • VALUEIN
    • week
    • year
    • Extract
    • yearOfWeek
    • FIRST_VALUE
    • LAST_VALUE
    • ST_GeomFromGeoJSON
    • ST_GeogFromGeoJSON
    • ST_AsGeoJSON
  • Reference
    • Single-stage query engine (v1)
    • Multi-stage query engine (v2)
    • Troubleshooting
      • Troubleshoot issues with the multi-stage query engine (v2)
      • Troubleshoot issues with ZooKeeper znodes
      • Realtime Ingestion Stopped
  • RESOURCES
    • Community
    • Team
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • Tableau
    • Trino
    • ThirdEye
    • Superset
    • Presto
    • Spark-Pinot Connector
  • Contributing
    • Contribute Pinot documentation
    • Style guide
Powered by GitBook
On this page
  • Download Apache Pinot
  • Prerequisites
  • Set up a cluster
  • Quick start
  • Manual cluster
  • Start Zookeeper
  • Start Pinot Controller
  • Start Pinot Broker
  • Start Pinot Server
  • Start Pinot Minion
  • Start Kafka
  • Setup cluster with config files
  • Start a Pinot component in debug mode with IntelliJ

Was this helpful?

Edit on GitHub
Export as PDF
  1. Basics
  2. Getting Started

Running Pinot locally

This quick start guide will help you bootstrap a Pinot standalone instance on your local machine.

PreviousGetting StartedNextRunning Pinot in Docker

Last updated 4 months ago

Was this helpful?

In this guide, you'll learn how to download and install Apache Pinot as a standalone instance.

Download Apache Pinot

First, download the Pinot distribution for this tutorial. You can either download a packaged release or build a distribution from the source code.

Prerequisites

  • Install with JDK 11 or 21. JDK 17 should work, but it is not officially supported.

  • For JDK 8 support, Pinot 0.12.1 is the last version compilable from the source code.

  • Pinot 1.0+ doesn't support JDK 8 anymore, build with JDK 11+

Note that some installations of the JDK do not contain the JNI bindings necessary to run all tests. If you see an error like java.lang.UnsatisfiedLinkError while running tests, you might need to change your JDK.

Download the distribution or build from source by selecting one of the following tabs:

Download the latest binary release from , or use this command:

PINOT_VERSION=1.1.0 #set to the Pinot version you decide to use

wget https://downloads.apache.org/pinot/apache-pinot-$PINOT_VERSION/apache-pinot-$PINOT_VERSION-bin.tar.gz

Extract the TAR file:

tar -zxvf apache-pinot-$PINOT_VERSION-bin.tar.gz

Navigate to the directory containing the launcher scripts:

cd apache-pinot-$PINOT_VERSION-bin

You can also find older versions of Apache Pinot at . For example, to download Pinot 0.10.0, run the following command:

OLDER_VERSION="0.10.0"
wget https://archive.apache.org/dist/pinot/apache-pinot-$OLDER_VERSION/apache-pinot-$OLDER_VERSION-bin.tar.gz

Follow these steps to checkout code from and build Pinot locally

Prerequisites

Install 3.6 or higher

Check out Pinot:

git clone https://github.com/apache/pinot.git
cd pinot

Build Pinot:

If you're building with JDK 8, add Maven option -Djdk.version=8.

mvn install package -DskipTests -Pbin-dist

Navigate to the directory containing the setup scripts. Note that Pinot scripts are located under pinot-distribution/target, not the target directory under root.

cd build
brew install pinot

Set up a cluster

Now that we've downloaded Pinot, it's time to set up a cluster. There are two ways to do this: through quick start or through setting up a cluster manually.

Quick start

Pinot comes with quick start commands that launch instances of Pinot components in the same process and import pre-built datasets.

For example, the following quick start command launches Pinot with a baseball dataset pre-loaded:

./bin/pinot-admin.sh QuickStart -type batch

Manual cluster

If you want to play with bigger datasets (more than a few megabytes), you can launch each component individually.

The video below is a step-by-step walk through for launching the individual components of Pinot and scaling them to multiple instances.

The examples below assume that you are using Java 11+.

If you are using Java 8, add the following settings insideJAVA_OPTS. So, for example, instead of this:

export JAVA_OPTS="-Xms4G -Xmx8G"

Use the following:

export JAVA_OPTS="-Xms4G -Xmx8G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-controller.log"

Start Zookeeper

./bin/pinot-admin.sh StartZookeeper \
  -zkPort 2191

Start Pinot Controller

export JAVA_OPTS="-Xms4G -Xmx8G"
./bin/pinot-admin.sh StartController \
    -zkAddress localhost:2191 \
    -controllerPort 9000

Start Pinot Broker

export JAVA_OPTS="-Xms4G -Xmx4G"
./bin/pinot-admin.sh StartBroker \
    -zkAddress localhost:2191

Start Pinot Server

export JAVA_OPTS="-Xms4G -Xmx16G"
./bin/pinot-admin.sh StartServer \
    -zkAddress localhost:2191

Start Pinot Minion

export JAVA_OPTS="-Xms4G -Xmx4G"
./bin/pinot-admin.sh StartMinion \
    -zkAddress localhost:2191

Start Kafka

./bin/pinot-admin.sh  StartKafka \ 
  -zkAddress=localhost:2191/kafka \
  -port 19092

Setup cluster with config files

Users could start and customize the cluster by modifying the config files and start the components with config files:

./bin/pinot-admin.sh StartController -config conf/pinot-controller.conf
./bin/pinot-admin.sh StartBroker -config conf/pinot-broker.conf
./bin/pinot-admin.sh StartServer -config conf/pinot-server.conf
./bin/pinot-admin.sh StartMinion -config conf/pinot-minion.conf

Start a Pinot component in debug mode with IntelliJ

Set break points and inspect variables by starting a Pinot component with debug mode in IntelliJ.

The following example demonstrates server debugging:

<component name="ProjectRunConfigurationManager">
  <configuration default="false" name="HelixServerStarter" type="Application" factoryName="Application" nameIsGenerated="true">
    <classpathModifications>
      <entry path="$PROJECT_DIR$/pinot-plugins/pinot-metrics/pinot-yammer/target/classes" />
      <entry path="$MAVEN_REPOSITORY$/com/yammer/metrics/metrics-core/2.2.0/metrics-core-2.2.0.jar" />
    </classpathModifications>
    <option name="MAIN_CLASS_NAME" value="org.apache.pinot.server.starter.helix.HelixServerStarter" />
    <module name="pinot-server" />
    <extension name="coverage">
      <pattern>
        <option name="PATTERN" value="org.apache.pinot.server.starter.helix.*" />
        <option name="ENABLED" value="true" />
      </pattern>
    </extension>
    <method v="2">
      <option name="Make" enabled="true" />
    </method>
  </configuration>
</component>

Pinot can also be installed on Mac OS using the Brew package manager. For instructions on installing Brew, see the .

For a list of all the available quick start commands, see the .

You can find the commands that are shown in this video in the .

You can use to browse the Zookeeper instance.

Once your cluster is up and running, you can head over to to learn how to run queries against the data.

First, startzookeeper , controller, and broker using the .

Then, use the following configuration under $PROJECT_DIR$\.run ) to start the server, replacing the metrics-core version and cluster name as needed. This is an example of how to use it.

Brew documentation
Quick Start Examples
this Github repository
Zooinspector
Exploring Pinot
commit
Apache Pinot
https://archive.apache.org/dist/pinot/
Github
Apache Maven
Download Apache Pinot
Set up a cluster
Start a Pinot component in debug mode with IntelliJ
steps described above
Neha Pawar from the Apache Pinot team shows you how to set up a Pinot cluster