Broker
Discover how Apache Pinot's broker component optimizes query processing, data retrieval, and enhances data-driven applications.
Last updated
Discover how Apache Pinot's broker component optimizes query processing, data retrieval, and enhances data-driven applications.
Last updated
Pinot brokers take query requests from client processes, scatter them to applicable servers, gather the results, and return results to the client. The controller shares cluster metadata with the brokers, which allows the brokers to create a plan for executing the query involving a minimal subset of servers with the source data and, when required, other servers to shuffle and consolidate results.
A production Pinot cluster contains many brokers. In general, the more brokers, the more concurrent queries a cluster can process, and the lower latency it can deliver on queries.
Pinot brokers are modeled as Helix spectators. They need to know the location of each segment of a table (and each replica of the segments) and route requests to the appropriate server that hosts the segments of the table being queried.
The broker ensures that all the rows of the table are queried exactly once so as to return correct, consistent results for a query. The brokers may optimize to prune some of the segments as long as accuracy is not sacrificed.
Helix provides the framework by which spectators can learn the location in which each partition of a resource (i.e. participant) resides. The brokers use this mechanism to learn the servers that host specific segments of a table.
In the case of hybrid tables, the brokers ensure that the overlap between real-time and offline segment data is queried exactly once, by performing offline and real-time federation.
Let's take this example, we have real-time data for five days - March 23 to March 27, and offline data has been pushed until Mar 25, which is two days behind real-time. The brokers maintain this time boundary.
Suppose, we get a query to this table : select sum(metric) from table
. The broker will split the query into 2 queries based on this time boundary – one for offline and one for real-time. This query becomes select sum(metric) from table_REALTIME where date >= Mar 25
and select sum(metric) from table_OFFLINE where date < Mar 25
The broker merges results from both these queries before returning the result to the client.
Make sure you've set up Zookeeper. If you're using Docker, make sure to pull the Pinot Docker image. To start a broker: