LogoLogo
latest
latest
  • Introduction
  • Basics
    • Concepts
      • Pinot storage model
      • Architecture
      • Components
        • Cluster
          • Tenant
          • Server
          • Controller
          • Broker
          • Minion
        • Table
          • Segment
            • Deep Store
            • Segment threshold
            • Segment retention
          • Schema
          • Time boundary
        • Pinot Data Explorer
    • Getting Started
      • Running Pinot locally
      • Running Pinot in Docker
      • Quick Start Examples
      • Running in Kubernetes
      • Running on public clouds
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Create and update a table configuration
      • Batch import example
      • Stream ingestion example
      • HDFS as Deep Storage
      • Troubleshooting Pinot
      • Frequently Asked Questions (FAQs)
        • General
        • Pinot On Kubernetes FAQ
        • Ingestion FAQ
        • Query FAQ
        • Operations FAQ
    • Indexing
      • Bloom filter
      • Dictionary index
      • Forward index
      • FST index
      • Geospatial
      • Inverted index
      • JSON index
      • Native text index
      • Range index
      • Star-tree index
      • Text search support
      • Timestamp index
      • Vector index
    • Release notes
      • 1.3.0
      • 1.2.0
      • 1.1.0
      • 1.0.0
      • 0.12.1
      • 0.12.0
      • 0.11.0
      • 0.10.0
      • 0.9.3
      • 0.9.2
      • 0.9.1
      • 0.9.0
      • 0.8.0
      • 0.7.1
      • 0.6.0
      • 0.5.0
      • 0.4.0
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • Connect to Streamlit
      • Connect to Dash
      • Visualize data with Redash
      • GitHub Events Stream
  • For Users
    • Query
      • Querying Pinot
      • Query Syntax
        • Explain Plan (Single-Stage)
        • Filtering with IdSet
        • GapFill Function For Time-Series Dataset
        • Grouping Algorithm
        • JOINs
        • Lookup UDF Join
      • Query Options
      • Query Quotas
      • Query using Cursors
      • Multi-stage query
        • Understanding Stages
        • Stats
        • Optimizing joins
        • Join strategies
          • Random + broadcast join strategy
          • Query time partition join strategy
          • Colocated join strategy
          • Lookup join strategy
        • Hints
        • Operator Types
          • Aggregate
          • Filter
          • Join
          • Intersect
          • Leaf
          • Literal
          • Mailbox receive
          • Mailbox send
          • Minus
          • Sort or limit
          • Transform
          • Union
          • Window
        • Stage-Level Spooling
      • Explain plan
    • APIs
      • Broker Query API
        • Query Response Format
      • Broker GRPC API
      • Controller Admin API
      • Controller API Reference
    • External Clients
      • JDBC
      • Java
      • Python
      • Golang
    • Tutorials
      • Use OSS as Deep Storage for Pinot
      • Ingest Parquet Files from S3 Using Spark
      • Creating Pinot Segments
      • Use S3 as Deep Storage for Pinot
      • Use S3 and Pinot in Docker
      • Batch Data Ingestion In Practice
      • Schema Evolution
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Dependency Management
      • Update documentation
    • Advanced
      • Data Ingestion Overview
      • Ingestion Aggregations
      • Ingestion Transformations
      • Null value support
      • Use the multi-stage query engine (v2)
      • Advanced Pinot Setup
    • Plugins
      • Write Custom Plugins
        • Input Format Plugin
        • Filesystem Plugin
        • Batch Segment Fetcher Plugin
        • Stream Ingestion Plugin
    • Design Documents
      • Segment Writer API
  • For Operators
    • Deployment and Monitoring
      • Set up cluster
      • Server Startup Status Checkers
      • Set up table
      • Set up ingestion
      • Decoupling Controller from the Data Path
      • Segment Assignment
      • Instance Assignment
      • Rebalance
        • Rebalance Servers
          • Examples and Scenarios
        • Rebalance Brokers
        • Rebalance Tenant
      • Separating data storage by age
        • Using multiple tenants
        • Using multiple directories
      • Pinot managed Offline flows
      • Minion merge rollup task
      • Consistent Push and Rollback
      • Access Control
      • Monitoring
      • Tuning
        • Tuning Default MMAP Advice
        • Real-time
        • Routing
        • Query Routing using Adaptive Server Selection
        • Query Scheduling
      • Upgrading Pinot with confidence
      • Managing Logs
      • OOM Protection Using Automatic Query Killing
      • Pause ingestion based on resource utilization
    • Command-Line Interface (CLI)
    • Configuration Recommendation Engine
    • Tutorials
      • Authentication
        • Basic auth access control
        • ZkBasicAuthAccessControl
      • Configuring TLS/SSL
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Monitor Pinot using Prometheus and Grafana
      • Performance Optimization Configurations
      • Segment Operations Throttling
      • Reload a table segment
  • Configuration Reference
    • Cluster
    • Controller
    • Broker
    • Server
    • Table
    • Ingestion
    • Schema
    • Database
    • Ingestion Job Spec
    • Monitoring Metrics
    • Plugin Reference
      • Stream Ingestion Connectors
      • VAR_POP
      • VAR_SAMP
      • STDDEV_POP
      • STDDEV_SAMP
    • Dynamic Environment
  • Manage Data
    • Import Data
      • SQL Insert Into From Files
      • Upload Pinot segment Using CommandLine
      • Batch Ingestion
        • Spark
        • Flink
        • Hadoop
        • Backfill Data
        • Dimension table
      • Stream Ingestion
        • Ingest streaming data from Apache Kafka
        • Ingest streaming data from Amazon Kinesis
        • Ingest streaming data from Apache Pulsar
        • Configure indexes
        • Stream ingestion with CLP
      • Upsert and Dedup
        • Stream ingestion with Upsert
        • Segment compaction on upserts
        • Stream ingestion with Dedup
      • Supported Data Formats
      • File Systems
        • Amazon S3
        • Azure Data Lake Storage
        • HDFS
        • Google Cloud Storage
      • Complex Type (Array, Map) Handling
        • Complex Type Examples (Unnest)
      • Ingest records with dynamic schemas
  • Functions
    • Aggregation Functions
    • Transformation Functions
    • Array Functions
    • Funnel Analysis Functions
    • Hash Functions
    • JSON Functions
    • User-Defined Functions (UDFs)
    • URL Functions
    • Unique Count and cardinality Estimation Functions
  • Window Functions
  • (Deprecating) Function List
    • ABS
    • ADD
    • ago
    • EXPR_MIN / EXPR_MAX
    • ARRAY_AGG
    • arrayConcatDouble
    • arrayConcatFloat
    • arrayConcatInt
    • arrayConcatLong
    • arrayConcatString
    • arrayContainsInt
    • arrayContainsString
    • arrayDistinctInt
    • arrayDistinctString
    • arrayIndexOfInt
    • arrayIndexOfString
    • ARRAYLENGTH
    • arrayRemoveInt
    • arrayRemoveString
    • arrayReverseInt
    • arrayReverseString
    • arraySliceInt
    • arraySliceString
    • arraySortInt
    • arraySortString
    • arrayUnionInt
    • arrayUnionString
    • AVGMV
    • Base64
    • caseWhen
    • ceil
    • CHR
    • codepoint
    • concat
    • count
    • COUNTMV
    • COVAR_POP
    • COVAR_SAMP
    • day
    • dayOfWeek
    • dayOfYear
    • DISTINCT
    • DISTINCTCOUNT
    • DISTINCTCOUNTMV
    • DISTINCT_COUNT_OFF_HEAP
    • SEGMENTPARTITIONEDDISTINCTCOUNT
    • DISTINCTCOUNTBITMAP
    • DISTINCTCOUNTBITMAPMV
    • DISTINCTCOUNTHLL
    • DISTINCTCOUNTHLLMV
    • DISTINCTCOUNTRAWHLL
    • DISTINCTCOUNTRAWHLLMV
    • DISTINCTCOUNTSMARTHLL
    • DISTINCTCOUNTHLLPLUS
    • DISTINCTCOUNTULL
    • DISTINCTCOUNTTHETASKETCH
    • DISTINCTCOUNTRAWTHETASKETCH
    • DISTINCTSUM
    • DISTINCTSUMMV
    • DISTINCTAVG
    • DISTINCTAVGMV
    • DIV
    • DATETIMECONVERT
    • DATETRUNC
    • exp
    • FIRSTWITHTIME
    • FLOOR
    • FrequentLongsSketch
    • FrequentStringsSketch
    • FromDateTime
    • FromEpoch
    • FromEpochBucket
    • FUNNELCOUNT
    • FunnelCompleteCount
    • FunnelMaxStep
    • FunnelMatchStep
    • GridDistance
    • Histogram
    • hour
    • isSubnetOf
    • JSONFORMAT
    • JSONPATH
    • JSONPATHARRAY
    • JSONPATHARRAYDEFAULTEMPTY
    • JSONPATHDOUBLE
    • JSONPATHLONG
    • JSONPATHSTRING
    • jsonextractkey
    • jsonextractscalar
    • LAG
    • LASTWITHTIME
    • LEAD
    • length
    • ln
    • lower
    • lpad
    • ltrim
    • max
    • MAXMV
    • MD5
    • millisecond
    • min
    • minmaxrange
    • MINMAXRANGEMV
    • MINMV
    • minute
    • MOD
    • mode
    • month
    • mult
    • now
    • percentile
    • percentileest
    • percentileestmv
    • percentilemv
    • percentiletdigest
    • percentiletdigestmv
    • percentilekll
    • percentilerawkll
    • percentilekllmv
    • percentilerawkllmv
    • quarter
    • regexpExtract
    • regexpReplace
    • remove
    • replace
    • reverse
    • round
    • roundDecimal
    • ROW_NUMBER
    • rpad
    • rtrim
    • second
    • sha
    • sha256
    • sha512
    • sqrt
    • startswith
    • ST_AsBinary
    • ST_AsText
    • ST_Contains
    • ST_Distance
    • ST_GeogFromText
    • ST_GeogFromWKB
    • ST_GeometryType
    • ST_GeomFromText
    • ST_GeomFromWKB
    • STPOINT
    • ST_Polygon
    • strpos
    • ST_Union
    • SUB
    • substr
    • sum
    • summv
    • TIMECONVERT
    • timezoneHour
    • timezoneMinute
    • ToDateTime
    • ToEpoch
    • ToEpochBucket
    • ToEpochRounded
    • TOJSONMAPSTR
    • toGeometry
    • toSphericalGeography
    • trim
    • upper
    • Url
    • UTF8
    • VALUEIN
    • week
    • year
    • Extract
    • yearOfWeek
    • FIRST_VALUE
    • LAST_VALUE
    • ST_GeomFromGeoJSON
    • ST_GeogFromGeoJSON
    • ST_AsGeoJSON
  • Reference
    • Single-stage query engine (v1)
    • Multi-stage query engine (v2)
    • Troubleshooting
      • Troubleshoot issues with the multi-stage query engine (v2)
      • Troubleshoot issues with ZooKeeper znodes
      • Realtime Ingestion Stopped
  • RESOURCES
    • Community
    • Team
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • Tableau
    • Trino
    • ThirdEye
    • Superset
    • Presto
    • Spark-Pinot Connector
  • Contributing
    • Contribute Pinot documentation
    • Style guide
Powered by GitBook
On this page
  • Create a Pinot table configuration
  • Update a Pinot table configuration
  • Update a Pinot table in the UI
  • Update a Pinot table using the API
  • Example Pinot table configuration file

Was this helpful?

Edit on GitHub
Export as PDF
  1. Basics
  2. Getting Started

Create and update a table configuration

Create and edit a table configuration in the Pinot UI or with the API.

PreviousRunning on AWSNextBatch import example

Last updated 1 month ago

Was this helpful?

In Apache Pinot, create a table by creating a JSON file, generally referred to as your table config. Update, add, or delete parameters as needed, and then reload the file.

Create a Pinot table configuration

Before you create a Pinot table configuration, you must first have a running Pinot cluster with broker and server tenants.

  1. Create a plaintext file table configuration locally using settings from for your use case. You may find it useful to download and then modify it. An example from among these is included at the end of this page in

  2. Use the Pinot API to upload your table config file: POST @fileName.json URL:9000/tables

Update a Pinot table configuration

To modify your Pinot table configuration, use the Pinot UI or the API.

Any time you make a change to your table config, you may need to do one or more of the following, depending on the change.

Simple changes only require updating and saving your modified table configuration file. These include:

  • Changing the data or segment retention time

  • Changing the realtime settings

To update existing data and segments, after you update and save the changes to the table config file, do the following as applicable:

When you add or modify indexes or the table schema, perform a . To all segments:

  • In the Pinot UI, from the table page, click Reload All Segments.

  • Using the Pinot API, send POST /segments/{tableName}/reload.

When you change the transform function used to populate a derived field or increase the number of partitions in an upsert-enabled table, perform a table re-bootstrap. One way to do this is to delete and recreate the table:

  • Using the Pinot API, first send DELETE /tables/{tableName} followed by POST /tables with the new table configuration.

When you change the stream topic or change the Kafka cluster containing the Kafka topic you want to consume from, perform a real-time ingestion pause and resume. To pause and resume real-time ingestion:

  • Using the Pinot API, first send POST /tables/{tableName}/pauseConsumption followed by POST /tables/{tableName}/resumeConsumption.

Update a Pinot table in the UI

To update a table configuration in the Pinot UI, do the following:

  1. In the Cluster Manager click the Tenant Name of the tenant that hosts the table you want to modify.

  2. Click the Table Name in the list of tables in the tenant.

  3. Click the Edit Table button. This creates a pop-up window containing the table configuration. Edit the contents in this window. Click Save when you are done.

Update a Pinot table using the API

To update a table configuration using the Pinot API, do the following:

  1. Get the current table configuration with GET /tables/{tableName}.

  2. Modify the file locally.

  3. Upload the edited file with PUT /table/{tableName} fileName.json.

Example Pinot table configuration file

{
  "OFFLINE": {
    "tableName": "airlineStats_OFFLINE",
    "tableType": "OFFLINE",
    "segmentsConfig": {
      "timeType": "DAYS",
      "replication": "1",
      "segmentAssignmentStrategy": "BalanceNumSegmentAssignmentStrategy",
      "timeColumnName": "DaysSinceEpoch",
      "segmentPushType": "APPEND",
      "minimizeDataMovement": false
    },
    "tenants": {
      "broker": "DefaultTenant",
      "server": "DefaultTenant"
    },
    "tableIndexConfig": {
      "rangeIndexVersion": 2,
      "autoGeneratedInvertedIndex": false,
      "createInvertedIndexDuringSegmentGeneration": false,
      "loadMode": "MMAP",
      "enableDefaultStarTree": false,
      "starTreeIndexConfigs": [
        {
          "dimensionsSplitOrder": [
            "AirlineID",
            "Origin",
            "Dest"
          ],
          "skipStarNodeCreationForDimensions": [],
          "functionColumnPairs": [
            "COUNT__*",
            "MAX__ArrDelay"
          ],
          "maxLeafRecords": 10
        },
        {
          "dimensionsSplitOrder": [
            "Carrier",
            "CancellationCode",
            "Origin",
            "Dest"
          ],
          "skipStarNodeCreationForDimensions": [],
          "functionColumnPairs": [
            "MAX__CarrierDelay",
            "AVG__CarrierDelay"
          ],
          "maxLeafRecords": 10
        }
      ],
      "enableDynamicStarTreeCreation": true,
      "aggregateMetrics": false,
      "nullHandlingEnabled": false,
      "optimizeDictionary": false,
      "optimizeDictionaryForMetrics": false,
      "noDictionarySizeRatioThreshold": 0
    },
    "metadata": {
      "customConfigs": {}
    },
    "fieldConfigList": [
      {
        "name": "ts",
        "encodingType": "DICTIONARY",
        "indexType": "TIMESTAMP",
        "indexTypes": [
          "TIMESTAMP"
        ],
        "timestampConfig": {
          "granularities": [
            "DAY",
            "WEEK",
            "MONTH"
          ]
        }
      }
    ],
    "ingestionConfig": {
      "transformConfigs": [
        {
          "columnName": "ts",
          "transformFunction": "fromEpochDays(DaysSinceEpoch)"
        },
        {
          "columnName": "tsRaw",
          "transformFunction": "fromEpochDays(DaysSinceEpoch)"
        }
      ],
      "continueOnError": false,
      "rowTimeValueCheck": false,
      "segmentTimeValueCheck": true
    },
    "tierConfigs": [
      {
        "name": "hotTier",
        "segmentSelectorType": "time",
        "segmentAge": "3130d",
        "storageType": "pinot_server",
        "serverTag": "DefaultTenant_OFFLINE"
      },
      {
        "name": "coldTier",
        "segmentSelectorType": "time",
        "segmentAge": "3140d",
        "storageType": "pinot_server",
        "serverTag": "DefaultTenant_OFFLINE"
      }
    ],
    "isDimTable": false
  }
}

When you re-partition data, perform a segment . To refresh, replace an existing segment with a new one by uploading a segment reusing the existing filename. Use the Pinot API, send POST /segments?tableName={yourTableName}.

This example comes from the . This table configuration defines a table called airlineStats_OFFLINE, which you can interact with by running the example.

refresh
Apache Pinot Quickstart Examples
the available properties
an example from the Pinot GitHub
consumption rate limiter
segment reload
reload
Example Pinot table config file