LogoLogo
latest
latest
  • Introduction
  • Basics
    • Concepts
      • Pinot storage model
      • Architecture
      • Components
        • Cluster
          • Tenant
          • Server
          • Controller
          • Broker
          • Minion
        • Table
          • Segment
            • Deep Store
            • Segment threshold
            • Segment retention
          • Schema
          • Time boundary
        • Pinot Data Explorer
    • Getting Started
      • Running Pinot locally
      • Running Pinot in Docker
      • Quick Start Examples
      • Running in Kubernetes
      • Running on public clouds
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Create and update a table configuration
      • Batch import example
      • Stream ingestion example
      • HDFS as Deep Storage
      • Troubleshooting Pinot
      • Frequently Asked Questions (FAQs)
        • General
        • Pinot On Kubernetes FAQ
        • Ingestion FAQ
        • Query FAQ
        • Operations FAQ
    • Indexing
      • Bloom filter
      • Dictionary index
      • Forward index
      • FST index
      • Geospatial
      • Inverted index
      • JSON index
      • Native text index
      • Range index
      • Star-tree index
      • Text search support
      • Timestamp index
      • Vector index
    • Release notes
      • 1.3.0
      • 1.2.0
      • 1.1.0
      • 1.0.0
      • 0.12.1
      • 0.12.0
      • 0.11.0
      • 0.10.0
      • 0.9.3
      • 0.9.2
      • 0.9.1
      • 0.9.0
      • 0.8.0
      • 0.7.1
      • 0.6.0
      • 0.5.0
      • 0.4.0
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • Connect to Streamlit
      • Connect to Dash
      • Visualize data with Redash
      • GitHub Events Stream
  • For Users
    • Query
      • Querying Pinot
      • Query Syntax
        • Explain Plan (Single-Stage)
        • Filtering with IdSet
        • GapFill Function For Time-Series Dataset
        • Grouping Algorithm
        • JOINs
        • Lookup UDF Join
      • Query Options
      • Query Quotas
      • Query using Cursors
      • Multi-stage query
        • Understanding Stages
        • Stats
        • Optimizing joins
        • Join strategies
          • Random + broadcast join strategy
          • Query time partition join strategy
          • Colocated join strategy
          • Lookup join strategy
        • Hints
        • Operator Types
          • Aggregate
          • Filter
          • Join
          • Intersect
          • Leaf
          • Literal
          • Mailbox receive
          • Mailbox send
          • Minus
          • Sort or limit
          • Transform
          • Union
          • Window
        • Stage-Level Spooling
      • Explain plan
    • APIs
      • Broker Query API
        • Query Response Format
      • Broker GRPC API
      • Controller Admin API
      • Controller API Reference
    • External Clients
      • JDBC
      • Java
      • Python
      • Golang
    • Tutorials
      • Use OSS as Deep Storage for Pinot
      • Ingest Parquet Files from S3 Using Spark
      • Creating Pinot Segments
      • Use S3 as Deep Storage for Pinot
      • Use S3 and Pinot in Docker
      • Batch Data Ingestion In Practice
      • Schema Evolution
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Dependency Management
      • Update documentation
    • Advanced
      • Data Ingestion Overview
      • Ingestion Aggregations
      • Ingestion Transformations
      • Null value support
      • Use the multi-stage query engine (v2)
      • Advanced Pinot Setup
    • Plugins
      • Write Custom Plugins
        • Input Format Plugin
        • Filesystem Plugin
        • Batch Segment Fetcher Plugin
        • Stream Ingestion Plugin
    • Design Documents
      • Segment Writer API
  • For Operators
    • Deployment and Monitoring
      • Set up cluster
      • Server Startup Status Checkers
      • Set up table
      • Set up ingestion
      • Decoupling Controller from the Data Path
      • Segment Assignment
      • Instance Assignment
      • Rebalance
        • Rebalance Servers
          • Examples and Scenarios
        • Rebalance Brokers
        • Rebalance Tenant
      • Separating data storage by age
        • Using multiple tenants
        • Using multiple directories
      • Pinot managed Offline flows
      • Minion merge rollup task
      • Consistent Push and Rollback
      • Access Control
      • Monitoring
      • Tuning
        • Tuning Default MMAP Advice
        • Real-time
        • Routing
        • Query Routing using Adaptive Server Selection
        • Query Scheduling
      • Upgrading Pinot with confidence
      • Managing Logs
      • OOM Protection Using Automatic Query Killing
      • Pause ingestion based on resource utilization
    • Command-Line Interface (CLI)
    • Configuration Recommendation Engine
    • Tutorials
      • Authentication
        • Basic auth access control
        • ZkBasicAuthAccessControl
      • Configuring TLS/SSL
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Monitor Pinot using Prometheus and Grafana
      • Performance Optimization Configurations
      • Segment Operations Throttling
      • Reload a table segment
  • Configuration Reference
    • Cluster
    • Controller
    • Broker
    • Server
    • Table
    • Ingestion
    • Schema
    • Database
    • Ingestion Job Spec
    • Monitoring Metrics
    • Plugin Reference
      • Stream Ingestion Connectors
      • VAR_POP
      • VAR_SAMP
      • STDDEV_POP
      • STDDEV_SAMP
    • Dynamic Environment
  • Manage Data
    • Import Data
      • SQL Insert Into From Files
      • Upload Pinot segment Using CommandLine
      • Batch Ingestion
        • Spark
        • Flink
        • Hadoop
        • Backfill Data
        • Dimension table
      • Stream Ingestion
        • Ingest streaming data from Apache Kafka
        • Ingest streaming data from Amazon Kinesis
        • Ingest streaming data from Apache Pulsar
        • Configure indexes
        • Stream ingestion with CLP
      • Upsert and Dedup
        • Stream ingestion with Upsert
        • Segment compaction on upserts
        • Stream ingestion with Dedup
      • Supported Data Formats
      • File Systems
        • Amazon S3
        • Azure Data Lake Storage
        • HDFS
        • Google Cloud Storage
      • Complex Type (Array, Map) Handling
        • Complex Type Examples (Unnest)
      • Ingest records with dynamic schemas
  • Functions
    • Aggregation Functions
    • Transformation Functions
    • Array Functions
    • Funnel Analysis Functions
    • Hash Functions
    • JSON Functions
    • User-Defined Functions (UDFs)
    • URL Functions
    • Unique Count and cardinality Estimation Functions
  • Window Functions
  • (Deprecating) Function List
    • ABS
    • ADD
    • ago
    • EXPR_MIN / EXPR_MAX
    • ARRAY_AGG
    • arrayConcatDouble
    • arrayConcatFloat
    • arrayConcatInt
    • arrayConcatLong
    • arrayConcatString
    • arrayContainsInt
    • arrayContainsString
    • arrayDistinctInt
    • arrayDistinctString
    • arrayIndexOfInt
    • arrayIndexOfString
    • ARRAYLENGTH
    • arrayRemoveInt
    • arrayRemoveString
    • arrayReverseInt
    • arrayReverseString
    • arraySliceInt
    • arraySliceString
    • arraySortInt
    • arraySortString
    • arrayUnionInt
    • arrayUnionString
    • AVGMV
    • Base64
    • caseWhen
    • ceil
    • CHR
    • codepoint
    • concat
    • count
    • COUNTMV
    • COVAR_POP
    • COVAR_SAMP
    • day
    • dayOfWeek
    • dayOfYear
    • DISTINCT
    • DISTINCTCOUNT
    • DISTINCTCOUNTMV
    • DISTINCT_COUNT_OFF_HEAP
    • SEGMENTPARTITIONEDDISTINCTCOUNT
    • DISTINCTCOUNTBITMAP
    • DISTINCTCOUNTBITMAPMV
    • DISTINCTCOUNTHLL
    • DISTINCTCOUNTHLLMV
    • DISTINCTCOUNTRAWHLL
    • DISTINCTCOUNTRAWHLLMV
    • DISTINCTCOUNTSMARTHLL
    • DISTINCTCOUNTHLLPLUS
    • DISTINCTCOUNTULL
    • DISTINCTCOUNTTHETASKETCH
    • DISTINCTCOUNTRAWTHETASKETCH
    • DISTINCTSUM
    • DISTINCTSUMMV
    • DISTINCTAVG
    • DISTINCTAVGMV
    • DIV
    • DATETIMECONVERT
    • DATETRUNC
    • exp
    • FIRSTWITHTIME
    • FLOOR
    • FrequentLongsSketch
    • FrequentStringsSketch
    • FromDateTime
    • FromEpoch
    • FromEpochBucket
    • FUNNELCOUNT
    • FunnelCompleteCount
    • FunnelMaxStep
    • FunnelMatchStep
    • GridDistance
    • Histogram
    • hour
    • isSubnetOf
    • JSONFORMAT
    • JSONPATH
    • JSONPATHARRAY
    • JSONPATHARRAYDEFAULTEMPTY
    • JSONPATHDOUBLE
    • JSONPATHLONG
    • JSONPATHSTRING
    • jsonextractkey
    • jsonextractscalar
    • LAG
    • LASTWITHTIME
    • LEAD
    • length
    • ln
    • lower
    • lpad
    • ltrim
    • max
    • MAXMV
    • MD5
    • millisecond
    • min
    • minmaxrange
    • MINMAXRANGEMV
    • MINMV
    • minute
    • MOD
    • mode
    • month
    • mult
    • now
    • percentile
    • percentileest
    • percentileestmv
    • percentilemv
    • percentiletdigest
    • percentiletdigestmv
    • percentilekll
    • percentilerawkll
    • percentilekllmv
    • percentilerawkllmv
    • quarter
    • regexpExtract
    • regexpReplace
    • remove
    • replace
    • reverse
    • round
    • roundDecimal
    • ROW_NUMBER
    • rpad
    • rtrim
    • second
    • sha
    • sha256
    • sha512
    • sqrt
    • startswith
    • ST_AsBinary
    • ST_AsText
    • ST_Contains
    • ST_Distance
    • ST_GeogFromText
    • ST_GeogFromWKB
    • ST_GeometryType
    • ST_GeomFromText
    • ST_GeomFromWKB
    • STPOINT
    • ST_Polygon
    • strpos
    • ST_Union
    • SUB
    • substr
    • sum
    • summv
    • TIMECONVERT
    • timezoneHour
    • timezoneMinute
    • ToDateTime
    • ToEpoch
    • ToEpochBucket
    • ToEpochRounded
    • TOJSONMAPSTR
    • toGeometry
    • toSphericalGeography
    • trim
    • upper
    • Url
    • UTF8
    • VALUEIN
    • week
    • year
    • Extract
    • yearOfWeek
    • FIRST_VALUE
    • LAST_VALUE
    • ST_GeomFromGeoJSON
    • ST_GeogFromGeoJSON
    • ST_AsGeoJSON
  • Reference
    • Single-stage query engine (v1)
    • Multi-stage query engine (v2)
    • Troubleshooting
      • Troubleshoot issues with the multi-stage query engine (v2)
      • Troubleshoot issues with ZooKeeper znodes
      • Realtime Ingestion Stopped
  • RESOURCES
    • Community
    • Team
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • Tableau
    • Trino
    • ThirdEye
    • Superset
    • Presto
    • Spark-Pinot Connector
  • Contributing
    • Contribute Pinot documentation
    • Style guide
Powered by GitBook
On this page
  • Changes that require a rebalance
  • How the tenant rebalance works
  • Tuning parameters
  • Running a Rebalance
  • Observability
  • Tenant rebalance progress
  • Table rebalance progress

Was this helpful?

Edit on GitHub
Export as PDF
  1. For Operators
  2. Deployment and Monitoring
  3. Rebalance

Rebalance Tenant

PreviousRebalance BrokersNextSeparating data storage by age

Last updated 11 months ago

Was this helpful?

Usually when we tag/untag servers to a tenant it gets tedious to rebalance each table under that tenant. This operation becomes impossible to handle if the tenant has large number of tables. The tenant rebalance operation allows us to do server rebalance on all the tables on a tenant and track the individual table rebalance progress with minimal operational overhead.

Changes that require a rebalance

Basically all the factors which require server rebalance apply here. The only difference with this operation is it can address those changes over multiple tables with a single operation.

How the tenant rebalance works

The tenant rebalance operation just provides a tunable orchestration of server rebalancing on multiple tables. Under the hood it leverages the existing server rebalance operation to perform the actual rebalance on each table. It provides the user a way to perform server rebalance on tables selectively in series and parallel. This is achieved using additional tuning parameters on top of usual .

Tuning parameters

Request param
Default vale
Description

tenantName

null

The tenant to rebalance

degreeOfParallelism

1

Number of tables to rebalance in parallel at a time

parallelWhitelist

{}

Set of tables that can be rebalanced in parallel with other tables in this set. If the set is empty and degree of parallelism is > 1 then all the tables under the tenant are considered as whitelist

parallelBlacklist

{}

Set of tables which should not be rebalanced in parallel with other tables in the tenant. This list takes priority over whitelist tables, i.e. if a table is present in both the lists its considered as blacklisted and hence not rebalanced in parallel

verboseResult

false

When set to true it will return all the server rebalance output for each table. When set to false it will only return the server rebalance job tracking id and status

Running a Rebalance

To run a tenant rebalance, use the following API. POST /tenants/{tenantName}/rebalance

Sample payload:

{
  "tenantName": "DefaultTenant",
  "degreeOfParallelism": 2,
  "parallelWhitelist": [
    "airlineStats1_OFFLINE",
    "airlineStats2_OFFLINE"
  ],
  "parallelBlacklist": [
    "airlineStats1_REALTIME"
  ],
  "verboseResult": false,
  "dryRun": false,
  "downtime": false,
  "reassignInstances": false,
  "includeConsuming": false,
  "bootstrap": false,
  "minAvailableReplicas": 1,
  "bestEfforts": false,
  "updateTargetTier": false,
  "externalViewCheckIntervalInMs": 1000,
  "externalViewStabilizationTimeoutInMs": 3600000
}

Sample response:

{
  "jobId": "dfbbebb7-1f62-497d-82a7-ded6e0d855e1",
  "rebalanceTableResults": {
    "airlineStats1_OFFLINE": {
      "jobId": "2d4dc2da-1071-42b5-a20c-ac38a6d53fc4",
      "status": "IN_PROGRESS",
      "description": "In progress, check controller task status for the progress"
    },
    "airlineStats2_OFFLINE": {
      "jobId": "2d4dc2da-497d-82a7-a20c-a113dfbbebb7",
      "status": "IN_PROGRESS",
      "description": "In progress, check controller task status for the progress"
    },
    "airlineStats1_REALTIME": {
      "jobId": "9284f137-29c1-4c5a-a113-17b90a484403",
      "status": "NO_OP",
      "description": "Table is already balanced"
    }
  }
}

Observability

On tenant rebalance job submission it will return the job id for the tenant rebalance job to track the tenant rebalance progress along with all the individual table server rebalance job ids to track individual table rebalance progress.

Tenant rebalance progress

To track the tenant rebalance progress use the below API GET /tenants/rebalanceStatus/{jobId} Sample response:

{
  "tenantRebalanceProgressStats": {
    "startTimeMs": 1689679866904,
    "timeToFinishInSeconds": 2345,
    "completionStatusMsg": "Successfully rebalanced tenant DefaultTenant.",
    "tableStatusMap": {
      "airlineStats1_OFFLINE": "Table is already balanced",
      "airlineStats2_OFFLINE": "Table rebalance in progress",
      "airlineStats1_REALTIME": "Table is already balanced"
    },
    "totalTables": 3,
    "remainingTables": 1,
    "tableRebalanceJobIdMap": {
      "airlineStats1_OFFLINE": "2d4dc2da-1071-42b5-a20c-ac38a6d53fc4",
      "airlineStats2_OFFLINE": "2d4dc2da-497d-82a7-a20c-a113dfbbebb7",
      "airlineStats1_REALTIME": "9284f137-29c1-4c5a-a113-17b90a484403"
    }
  },
  "timeElapsedSinceStartInSeconds": 12345
}

Table rebalance progress

The rebalance API for tenant will take the same set of as the server rebalance API. In addition to that the tenant rebalance API will also take the below parameters

Use the same API mentioned in

parameters
server rebalance status tracking
rebalance parameters
img.png