Apache Pinot Docs
latest
Search
K

Input formats

This section contains a collection of guides that will show you how to import data from a Pinot-supported input format.
Pinot offers support for various popular input formats during ingestion. By changing the input format, you can reduce the time spent doing serialization-deserialization and speed up the ingestion.

Configuring input formats

To change the input format, adjust the recordReaderSpec config in the ingestion job specification.
recordReaderSpec:
dataFormat: 'csv'
className: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReader'
configClassName: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReaderConfig'
configs:
key1 : 'value1'
key2 : 'value2'
The configuration consists of the following keys:
  • dataFormat: Name of the data format to consume.
  • className: Name of the class that implements the RecordReader interface. This class is used for parsing the data.
  • configClassName: Name of the class that implements the RecordReaderConfig interface. This class is used the parse the values mentioned in configs
  • configs: Key-value pair for format-specific configurations. This field is optional.

Supported input formats

Pinot supports multiple input formats out of the box. Specify the corresponding readers and the associated custom configurations to switch between formats.

CSV

dataFormat: 'csv'
className: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReader'
configClassName: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReaderConfig'
configs:
fileFormat: 'default' #should be one of default, rfc4180, excel, tdf, mysql
header: 'columnName separated by delimiter'
delimiter: ','
multiValueDelimiter: '-'
CSV Record Reader supports the following configs:
  • fileFormat: default, rfc4180, excel, tdf, mysql
  • header: Header of the file. The columnNames should be separated by the delimiter mentioned in the configuration.
  • delimiter: The character seperating the columns.
  • multiValueDelimiter: The character separating multiple values in a single column. This can be used to split a column into a list.
  • skipHeader: Skip header record in the file. Boolean.
  • ignoreEmptyLines: Ignore empty lines (instead of filling them with default values). Boolean.
  • ignoreSurroundingSpaces: ignore spaces around column names and values. Boolean
  • quoteCharacter: Single character used for quotes in CSV files.
  • recordSeparator: Character used to separate records in the input file. Default is or \r depending on the platform.
  • nullStringValue: String value that represents null in CSV files. Default is empty string.
  • skipUnParseableLines : Skip lines that cannot be parsed. Note that this would result in data loss. Boolean.
Your CSV file may have raw text fields that cannot be reliably delimited using any character. In this case, explicitly set the multiValueDelimeter field to empty in the ingestion config. multiValueDelimiter: ''

Avro

dataFormat: 'avro'
className: 'org.apache.pinot.plugin.inputformat.avro.AvroRecordReader'
configs:
enableLogicalTypes: true
The Avro record reader converts the data in file to a GenericRecord. A Java class or .avro file is not required. By default, the Avro record reader only supports primitive types. To enable support for rest of the Avro data types, set enableLogicalTypes to true .
We use the following conversion table to translate between Avro and Pinot data types. The conversions are done using the offical Avro methods present in org.apache.avro.Conversions.
Avro Data Type
Pinot Data Type
Comment
INT
INT
LONG
LONG
FLOAT
FLOAT
DOUBLE
DOUBLE
BOOLEAN
BOOLEAN
STRING
STRING
ENUM
STRING
BYTES
BYTES
FIXED
BYTES
MAP
JSON
ARRAY
JSON
RECORD
JSON
UNION
JSON
DECIMAL
BYTES
UUID
STRING
DATE
STRING
yyyy-MM-dd format
TIME_MILLIS
STRING
HH:mm:ss.SSS format
TIME_MICROS
STRING
HH:mm:ss.SSSSSS format
TIMESTAMP_MILLIS
TIMESTAMP
TIMESTAMP_MICROS
TIMESTAMP

JSON

dataFormat: 'json'
className: 'org.apache.pinot.plugin.inputformat.json.JSONRecordReader'

Thrift

dataFormat: 'thrift'
className: 'org.apache.pinot.plugin.inputformat.thrift.ThriftRecordReader'
configs:
thriftClass: 'ParserClassName'
Thrift requires the generated class using .thrift file to parse the data. The .class file should be available in the Pinot's classpath. You can put the files in the lib/ folder of Pinot distribution directory.

Parquet

dataFormat: 'parquet'
className: 'org.apache.pinot.plugin.inputformat.parquet.ParquetRecordReader'
Since 0.11.0 release, the Parquet record reader determines whether to use ParquetAvroRecordReader or ParquetNativeRecordReader to read records. The reader looks for the parquet.avro.schema or avro.schema key in the parquet file footer, and if present, uses the Avro reader.
You can change the record reader manually in case of a misconfiguration.
dataFormat: 'parquet'
className: 'org.apache.pinot.plugin.inputformat.parquet.ParquetNativeRecordReader'
For the support of DECIMAL and other parquet native data types, always use ParquetNativeRecordReader.
INT96
LONG
ParquetINT96 type converts nanoseconds
to Pinot INT64 type of milliseconds
INT64
LONG
INT32
INT
FLOAT
FLOAT
DOUBLE
DOUBLE
BINARY
BYTES
FIXED-LEN-BYTE-ARRAY
BYTES
DECIMAL
DOUBLE
ENUM
STRING
UTF8
STRING
REPEATED
MULTIVALUE/MAP (represented as MV
if parquet original type is LIST, then it is converted to MULTIVALUE column otherwise a MAP column.
For ParquetAvroRecordReader , you can refer to the Avro section above for the type conversions.

ORC

dataFormat: 'orc'
className: 'org.apache.pinot.plugin.inputformat.orc.ORCRecordReader'
ORC record reader supports the following data types -
ORC Data Type
Java Data Type
BOOLEAN
String
SHORT
Integer
INT
Integer
LONG
Integer
FLOAT
Float
DOUBLE
Double
STRING
String
VARCHAR
String
CHAR
String
LIST
Object[]
MAP
Map<Object, Object>
DATE
Long
TIMESTAMP
Long
BINARY
byte[]
BYTE
Integer
In LIST and MAP types, the object should only belong to one of the data types supported by Pinot.

Protocol Buffers

dataFormat: 'proto'
className: 'org.apache.pinot.plugin.inputformat.protobuf.ProtoBufRecordReader'
configs:
descriptorFile: 'file:///path/to/sample.desc'
The reader requires a descriptor file to deserialize the data present in the files. You can generate the descriptor file (.desc) from the .proto file using the command -
protoc --include_imports --descriptor_set_out=/absolute/path/to/output.desc /absolute/path/to/input.proto