LogoLogo
release-1.0.0
release-1.0.0
  • Introduction
  • Basics
    • Concepts
    • Architecture
    • Components
      • Cluster
        • Tenant
        • Server
        • Controller
        • Broker
        • Minion
      • Table
        • Segment
          • Deep Store
        • Schema
      • Pinot Data Explorer
    • Getting Started
      • Running Pinot locally
      • Running Pinot in Docker
      • Quick Start Examples
      • Running in Kubernetes
      • Running on public clouds
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Batch import example
      • Stream ingestion example
      • HDFS as Deep Storage
      • Troubleshooting Pinot
      • Frequently Asked Questions (FAQs)
        • General
        • Pinot On Kubernetes FAQ
        • Ingestion FAQ
        • Query FAQ
        • Operations FAQ
    • Import Data
      • From Query Console
      • Batch Ingestion
        • Spark
        • Flink
        • Hadoop
        • Backfill Data
        • Dimension table
      • Stream ingestion
        • Apache Kafka
        • Amazon Kinesis
        • Apache Pulsar
      • Stream Ingestion with Upsert
      • Stream Ingestion with Dedup
      • Stream Ingestion with CLP
      • File Systems
        • Amazon S3
        • Azure Data Lake Storage
        • HDFS
        • Google Cloud Storage
      • Input formats
      • Complex Type (Array, Map) Handling
      • Reload a table segment
      • Upload a table segment
    • Indexing
      • Forward Index
      • Inverted Index
      • Star-Tree Index
      • Bloom Filter
      • Range Index
      • Native Text Index
      • Text search support
      • JSON Index
      • Geospatial
      • Timestamp Index
    • Releases
      • Apache Pinotâ„¢ 1.0.0 release notes
      • 0.12.1
      • 0.12.0
      • 0.11.0
      • 0.10.0
      • 0.9.3
      • 0.9.2
      • 0.9.1
      • 0.9.0
      • 0.8.0
      • 0.7.1
      • 0.6.0
      • 0.5.0
      • 0.4.0
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • GitHub Events Stream
  • For Users
    • Query
      • Querying Pinot
      • Querying JSON data
      • Query Options
      • Aggregation Functions
      • Cardinality Estimation
      • Explain Plan
      • Filtering with IdSet
      • GapFill Function For Time-Series Dataset
      • Grouping Algorithm
      • JOINs
      • Lookup UDF Join
      • Transformation Functions
      • User-Defined Functions (UDFs)
      • Window functions
    • APIs
      • Broker Query API
        • Query Response Format
      • Controller Admin API
      • Controller API Reference
    • External Clients
      • JDBC
      • Java
      • Python
      • Golang
    • Tutorials
      • Use OSS as Deep Storage for Pinot
      • Ingest Parquet Files from S3 Using Spark
      • Creating Pinot Segments
      • Use S3 as Deep Storage for Pinot
      • Use S3 and Pinot in Docker
      • Batch Data Ingestion In Practice
      • Schema Evolution
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Update documentation
    • Advanced
      • Data Ingestion Overview
      • Ingestion Aggregations
      • Ingestion Transformations
      • Null Value Support
      • Use the multi-stage query engine (v2)
      • Troubleshoot issues with the multi-stage query engine (v2)
      • Advanced Pinot Setup
    • Plugins
      • Write Custom Plugins
        • Input Format Plugin
        • Filesystem Plugin
        • Batch Segment Fetcher Plugin
        • Stream Ingestion Plugin
    • Design Documents
      • Segment Writer API
  • For Operators
    • Deployment and Monitoring
      • Set up cluster
      • Server Startup Status Checkers
      • Set up table
      • Set up ingestion
      • Decoupling Controller from the Data Path
      • Segment Assignment
      • Instance Assignment
      • Rebalance
        • Rebalance Servers
        • Rebalance Brokers
      • Separating data storage by age
        • Using multiple tenants
        • Using multiple directories
      • Pinot managed Offline flows
      • Minion merge rollup task
      • Consistent Push and Rollback
      • Access Control
      • Monitoring
      • Tuning
        • Real-time
        • Routing
        • Query Routing using Adaptive Server Selection
        • Query Scheduling
      • Upgrading Pinot with confidence
      • Managing Logs
      • OOM Protection Using Automatic Query Killing
    • Command-Line Interface (CLI)
    • Configuration Recommendation Engine
    • Tutorials
      • Authentication
        • Basic auth access control
        • ZkBasicAuthAccessControl
      • Configuring TLS/SSL
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Monitor Pinot using Prometheus and Grafana
      • Performance Optimization Configurations
  • Configuration Reference
    • Cluster
    • Controller
    • Broker
    • Server
    • Table
    • Schema
    • Ingestion Job Spec
    • Monitoring Metrics
    • Functions
      • ABS
      • ADD
      • ago
      • ARG_MIN / ARG_MAX
      • arrayConcatDouble
      • arrayConcatFloat
      • arrayConcatInt
      • arrayConcatLong
      • arrayConcatString
      • arrayContainsInt
      • arrayContainsString
      • arrayDistinctInt
      • arrayDistinctString
      • arrayIndexOfInt
      • arrayIndexOfString
      • ARRAYLENGTH
      • arrayRemoveInt
      • arrayRemoveString
      • arrayReverseInt
      • arrayReverseString
      • arraySliceInt
      • arraySliceString
      • arraySortInt
      • arraySortString
      • arrayUnionInt
      • arrayUnionString
      • AVGMV
      • Base64
      • caseWhen
      • ceil
      • CHR
      • codepoint
      • concat
      • count
      • COUNTMV
      • COVAR_POP
      • COVAR_SAMP
      • day
      • dayOfWeek
      • dayOfYear
      • DISTINCT
      • DISTINCTAVG
      • DISTINCTAVGMV
      • DISTINCTCOUNT
      • DISTINCTCOUNTBITMAP
      • DISTINCTCOUNTHLLMV
      • DISTINCTCOUNTHLL
      • DISTINCTCOUNTBITMAPMV
      • DISTINCTCOUNTMV
      • DISTINCTCOUNTRAWHLL
      • DISTINCTCOUNTRAWHLLMV
      • DISTINCTCOUNTRAWTHETASKETCH
      • DISTINCTCOUNTTHETASKETCH
      • DISTINCTSUM
      • DISTINCTSUMMV
      • DIV
      • DATETIMECONVERT
      • DATETRUNC
      • exp
      • FLOOR
      • FromDateTime
      • FromEpoch
      • FromEpochBucket
      • FUNNELCOUNT
      • Histogram
      • hour
      • isSubnetOf
      • JSONFORMAT
      • JSONPATH
      • JSONPATHARRAY
      • JSONPATHARRAYDEFAULTEMPTY
      • JSONPATHDOUBLE
      • JSONPATHLONG
      • JSONPATHSTRING
      • jsonextractkey
      • jsonextractscalar
      • length
      • ln
      • lower
      • lpad
      • ltrim
      • max
      • MAXMV
      • MD5
      • millisecond
      • min
      • minmaxrange
      • MINMAXRANGEMV
      • MINMV
      • minute
      • MOD
      • mode
      • month
      • mult
      • now
      • percentile
      • percentileest
      • percentileestmv
      • percentilemv
      • percentiletdigest
      • percentiletdigestmv
      • percentilekll
      • percentilerawkll
      • percentilekllmv
      • percentilerawkllmv
      • quarter
      • regexpExtract
      • regexpReplace
      • remove
      • replace
      • reverse
      • round
      • ROW_NUMBER
      • rpad
      • rtrim
      • second
      • SEGMENTPARTITIONEDDISTINCTCOUNT
      • sha
      • sha256
      • sha512
      • sqrt
      • startswith
      • ST_AsBinary
      • ST_AsText
      • ST_Contains
      • ST_Distance
      • ST_GeogFromText
      • ST_GeogFromWKB
      • ST_GeometryType
      • ST_GeomFromText
      • ST_GeomFromWKB
      • STPOINT
      • ST_Polygon
      • strpos
      • ST_Union
      • SUB
      • substr
      • sum
      • summv
      • TIMECONVERT
      • timezoneHour
      • timezoneMinute
      • ToDateTime
      • ToEpoch
      • ToEpochBucket
      • ToEpochRounded
      • TOJSONMAPSTR
      • toGeometry
      • toSphericalGeography
      • trim
      • upper
      • Url
      • UTF8
      • VALUEIN
      • week
      • year
      • yearOfWeek
      • Extract
    • Plugin Reference
      • Stream Ingestion Connectors
      • VAR_POP
      • VAR_SAMP
      • STDDEV_POP
      • STDDEV_SAMP
  • Reference
    • Single-stage query engine (v1)
    • Multi-stage query engine (v2)
  • RESOURCES
    • Community
    • Team
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • Tableau
    • Trino
    • ThirdEye
    • Superset
    • Presto
    • Spark-Pinot Connector
  • Contributing
    • Contribute Pinot documentation
    • Style guide
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. For Users
  2. APIs
  3. Broker Query API

Query Response Format

PreviousBroker Query APINextController Admin API

Last updated 1 year ago

Was this helpful?

SQL response

Response is returned in a SQL-like tabular structure. Note, this is the response returned from the standard-SQL endpoint. For PQL endpoint response, skip to

$ curl -H "Content-Type: application/json" -X POST \
   -d '{"sql":"SELECT moo, bar, foo FROM myTable ORDER BY foo DESC"}' \
   http://localhost:8099/query/sql
{
  "exceptions": [], 
  "minConsumingFreshnessTimeMs": 0, 
  "numConsumingSegmentsQueried": 0, 
  "numDocsScanned": 6, 
  "numEntriesScannedInFilter": 0, 
  "numEntriesScannedPostFilter": 18, 
  "numGroupsLimitReached": false, 
  "numSegmentsMatched": 2, 
  "numSegmentsProcessed": 2, 
  "numSegmentsQueried": 2, 
  "numServersQueried": 1, 
  "numServersResponded": 1, 
  "resultTable": {
    "dataSchema": {
      "columnDataTypes": [
        "LONG",
        "INT",
        "STRING"
      ], 
      "columnNames": [
        "moo", 
        "bar",
        "foo"
      ]
    }, 
    "rows": [
      [ 
        40015, 
        2019,
        "xyz"
      ], 
      [
        1002,
        2001,
        "pqr"
      ], 
      [
        20555,
        1988,
        "pqr"
      ],
      [ 
        203,
        2010,
        "pqr"
      ], 
      [
        500,
        2008,
        "abc"
      ], 
      [
        60, 
        2003,
        "abc"
      ]
    ]
  }, 
  "segmentStatistics": [], 
  "timeUsedMs": 4, 
  "totalDocs": 6, 
  "traceInfo": {}
}
$ curl -X POST \
  -d '{"sql":"SELECT SUM(moo), MAX(bar), COUNT(*) FROM myTable"}' \
  localhost:8099/query/sql -H "Content-Type: application/json" 
{
  "exceptions": [], 
  "minConsumingFreshnessTimeMs": 0, 
  "numConsumingSegmentsQueried": 0, 
  "numDocsScanned": 6, 
  "numEntriesScannedInFilter": 0, 
  "numEntriesScannedPostFilter": 12, 
  "numGroupsLimitReached": false, 
  "numSegmentsMatched": 2, 
  "numSegmentsProcessed": 2, 
  "numSegmentsQueried": 2, 
  "numServersQueried": 1, 
  "numServersResponded": 1, 
  "resultTable": {
    "dataSchema": {
      "columnDataTypes": [
        "DOUBLE", 
        "DOUBLE", 
        "LONG"
      ], 
      "columnNames": [
        "sum(moo)", 
        "max(bar)", 
        "count(*)"
      ]
    }, 
    "rows": [
      [
        62335, 
        2019.0, 
        6
      ]
    ]
  }, 
  "segmentStatistics": [], 
  "timeUsedMs": 87, 
  "totalDocs": 6, 
  "traceInfo": {}
}
$ curl -X POST \
  -d '{"sql":"SELECT SUM(moo), MAX(bar) FROM myTable GROUP BY foo ORDER BY foo"}' \
  localhost:8099/query/sql -H "Content-Type: application/json" 
{
  "exceptions": [], 
  "minConsumingFreshnessTimeMs": 0, 
  "numConsumingSegmentsQueried": 0, 
  "numDocsScanned": 6, 
  "numEntriesScannedInFilter": 0, 
  "numEntriesScannedPostFilter": 18, 
  "numGroupsLimitReached": false, 
  "numSegmentsMatched": 2, 
  "numSegmentsProcessed": 2, 
  "numSegmentsQueried": 2, 
  "numServersQueried": 1, 
  "numServersResponded": 1, 
  "resultTable": {
    "dataSchema": {
      "columnDataTypes": [
        "STRING", 
        "DOUBLE", 
        "DOUBLE"
      ], 
      "columnNames": [
        "foo", 
        "sum(moo)", 
        "max(bar)"
      ]
    }, 
    "rows": [
      [
        "abc", 
        560.0, 
        2008.0
      ], 
      [
        "pqr", 
        21760.0, 
        2010.0
      ], 
      [
        "xyz", 
        40015.0, 
        2019.0
      ]
    ]
  }, 
  "segmentStatistics": [], 
  "timeUsedMs": 15, 
  "totalDocs": 6, 
  "traceInfo": {}
}
Response Field
Description

resultTable

This contains everything needed to process the response

resultTable.dataSchema

This describes schema of the response (columnNames and their dataTypes)

resultTable.dataSchema.columnNames

columnNames in the response.

resultTable.dataSchema.columnDataTypes

DataTypes for each column

resultTable.rows

Actual content with values. This is an array of arrays. number of rows depends on the limit value in the query. The number of columns in each row is equal to the length of (resultTable.dataSchema.columnNames)

timeUsedms

Total time taken as seen by the broker before sending the response back to the client

totalDocs

This is number of documents/records in the table

numServersQueried

represents the number of servers queried by the broker (note that this may be less than the total number of servers since broker can apply some optimizations to minimize the number of servers)

numServersResponded

This should be equal to the numServersQueried. If this is not the same, then one of more servers might have timed out. If numServersQueried != numServersResponded the results can be considered partial and clients can retry the query with exponential back off.

numSegmentsQueried

Total number of segmentsQueried for this query. it may be less than the total number of segments since broker can apply optimizations.

numSegmentsMatched

This is the number of segments processed with at least one document matched query response. In general numSegmentsQueried <= numSegmentsProcessed <= numSegmentsMatched.

numSegmentsProcessed

Number of segment operators used to process segments. This is indicates the effectiveness of the pruning logic.

numDocScanned

The number of docs/records that were selected after filter phase.

numEntriesScannedInFilter

The number of entries scanned in the filtering phase of query execution.

It could be larger than the total scanned doc count because of multiple filtering predicate and/or multi-value entries.

It can also be smaller than the total scanned doc count if indexing is used for filtering.

This along with numEntriesScannedInPostFilter should give an idea on where most of the time is spent during query processing. If this is high, enabling indexing for columns in tableConfig can be one way to bring it down.

numEntriesScannedPostFilter

The number of entries scanned after the filtering phase of query execution, ie. aggregation and/or group-by phases. This is equivalent to numDocScanned * number of projected columns.

This along with numEntriesScannedInFilter should give an idea on where most of the time is spent during query processing.

A high number for this means the selectivity is low (i.e. pinot needs to scan a lot of records to answer the query). If this is high, adding regular inverted/bitmap index will not help. However, consider using star-tree index.

numGroupsLimitReached

If the query has group by clause and top K, pinot drops new entries after the numGroupsLimit is reached. If this boolean is set to true then the query result may not be accurate. Note that the default value for numGroupsLimit is 100k and should be sufficient for most use cases.

exceptions

Will contain the stack trace if there is any exception processing the query.

segmentStatistics

N/A

traceInfo

If trace is enabled (can be enabled for each query), this will contain the timing for each stage and each segment. Advanced feature and intended for dev/debugging purposes

Note

Pinot Query Language (PQL) endpoint has been deprecated and removed. Use the sql endpoint.

PQL endpoint response