LogoLogo
release-1.0.0
release-1.0.0
  • Introduction
  • Basics
    • Concepts
    • Architecture
    • Components
      • Cluster
        • Tenant
        • Server
        • Controller
        • Broker
        • Minion
      • Table
        • Segment
          • Deep Store
        • Schema
      • Pinot Data Explorer
    • Getting Started
      • Running Pinot locally
      • Running Pinot in Docker
      • Quick Start Examples
      • Running in Kubernetes
      • Running on public clouds
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Batch import example
      • Stream ingestion example
      • HDFS as Deep Storage
      • Troubleshooting Pinot
      • Frequently Asked Questions (FAQs)
        • General
        • Pinot On Kubernetes FAQ
        • Ingestion FAQ
        • Query FAQ
        • Operations FAQ
    • Import Data
      • From Query Console
      • Batch Ingestion
        • Spark
        • Flink
        • Hadoop
        • Backfill Data
        • Dimension table
      • Stream ingestion
        • Apache Kafka
        • Amazon Kinesis
        • Apache Pulsar
      • Stream Ingestion with Upsert
      • Stream Ingestion with Dedup
      • Stream Ingestion with CLP
      • File Systems
        • Amazon S3
        • Azure Data Lake Storage
        • HDFS
        • Google Cloud Storage
      • Input formats
      • Complex Type (Array, Map) Handling
      • Reload a table segment
      • Upload a table segment
    • Indexing
      • Forward Index
      • Inverted Index
      • Star-Tree Index
      • Bloom Filter
      • Range Index
      • Native Text Index
      • Text search support
      • JSON Index
      • Geospatial
      • Timestamp Index
    • Releases
      • Apache Pinot™ 1.0.0 release notes
      • 0.12.1
      • 0.12.0
      • 0.11.0
      • 0.10.0
      • 0.9.3
      • 0.9.2
      • 0.9.1
      • 0.9.0
      • 0.8.0
      • 0.7.1
      • 0.6.0
      • 0.5.0
      • 0.4.0
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • GitHub Events Stream
  • For Users
    • Query
      • Querying Pinot
      • Querying JSON data
      • Query Options
      • Aggregation Functions
      • Cardinality Estimation
      • Explain Plan
      • Filtering with IdSet
      • GapFill Function For Time-Series Dataset
      • Grouping Algorithm
      • JOINs
      • Lookup UDF Join
      • Transformation Functions
      • User-Defined Functions (UDFs)
      • Window functions
    • APIs
      • Broker Query API
        • Query Response Format
      • Controller Admin API
      • Controller API Reference
    • External Clients
      • JDBC
      • Java
      • Python
      • Golang
    • Tutorials
      • Use OSS as Deep Storage for Pinot
      • Ingest Parquet Files from S3 Using Spark
      • Creating Pinot Segments
      • Use S3 as Deep Storage for Pinot
      • Use S3 and Pinot in Docker
      • Batch Data Ingestion In Practice
      • Schema Evolution
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Update documentation
    • Advanced
      • Data Ingestion Overview
      • Ingestion Aggregations
      • Ingestion Transformations
      • Null Value Support
      • Use the multi-stage query engine (v2)
      • Troubleshoot issues with the multi-stage query engine (v2)
      • Advanced Pinot Setup
    • Plugins
      • Write Custom Plugins
        • Input Format Plugin
        • Filesystem Plugin
        • Batch Segment Fetcher Plugin
        • Stream Ingestion Plugin
    • Design Documents
      • Segment Writer API
  • For Operators
    • Deployment and Monitoring
      • Set up cluster
      • Server Startup Status Checkers
      • Set up table
      • Set up ingestion
      • Decoupling Controller from the Data Path
      • Segment Assignment
      • Instance Assignment
      • Rebalance
        • Rebalance Servers
        • Rebalance Brokers
      • Separating data storage by age
        • Using multiple tenants
        • Using multiple directories
      • Pinot managed Offline flows
      • Minion merge rollup task
      • Consistent Push and Rollback
      • Access Control
      • Monitoring
      • Tuning
        • Real-time
        • Routing
        • Query Routing using Adaptive Server Selection
        • Query Scheduling
      • Upgrading Pinot with confidence
      • Managing Logs
      • OOM Protection Using Automatic Query Killing
    • Command-Line Interface (CLI)
    • Configuration Recommendation Engine
    • Tutorials
      • Authentication
        • Basic auth access control
        • ZkBasicAuthAccessControl
      • Configuring TLS/SSL
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Monitor Pinot using Prometheus and Grafana
      • Performance Optimization Configurations
  • Configuration Reference
    • Cluster
    • Controller
    • Broker
    • Server
    • Table
    • Schema
    • Ingestion Job Spec
    • Monitoring Metrics
    • Functions
      • ABS
      • ADD
      • ago
      • ARG_MIN / ARG_MAX
      • arrayConcatDouble
      • arrayConcatFloat
      • arrayConcatInt
      • arrayConcatLong
      • arrayConcatString
      • arrayContainsInt
      • arrayContainsString
      • arrayDistinctInt
      • arrayDistinctString
      • arrayIndexOfInt
      • arrayIndexOfString
      • ARRAYLENGTH
      • arrayRemoveInt
      • arrayRemoveString
      • arrayReverseInt
      • arrayReverseString
      • arraySliceInt
      • arraySliceString
      • arraySortInt
      • arraySortString
      • arrayUnionInt
      • arrayUnionString
      • AVGMV
      • Base64
      • caseWhen
      • ceil
      • CHR
      • codepoint
      • concat
      • count
      • COUNTMV
      • COVAR_POP
      • COVAR_SAMP
      • day
      • dayOfWeek
      • dayOfYear
      • DISTINCT
      • DISTINCTAVG
      • DISTINCTAVGMV
      • DISTINCTCOUNT
      • DISTINCTCOUNTBITMAP
      • DISTINCTCOUNTHLLMV
      • DISTINCTCOUNTHLL
      • DISTINCTCOUNTBITMAPMV
      • DISTINCTCOUNTMV
      • DISTINCTCOUNTRAWHLL
      • DISTINCTCOUNTRAWHLLMV
      • DISTINCTCOUNTRAWTHETASKETCH
      • DISTINCTCOUNTTHETASKETCH
      • DISTINCTSUM
      • DISTINCTSUMMV
      • DIV
      • DATETIMECONVERT
      • DATETRUNC
      • exp
      • FLOOR
      • FromDateTime
      • FromEpoch
      • FromEpochBucket
      • FUNNELCOUNT
      • Histogram
      • hour
      • isSubnetOf
      • JSONFORMAT
      • JSONPATH
      • JSONPATHARRAY
      • JSONPATHARRAYDEFAULTEMPTY
      • JSONPATHDOUBLE
      • JSONPATHLONG
      • JSONPATHSTRING
      • jsonextractkey
      • jsonextractscalar
      • length
      • ln
      • lower
      • lpad
      • ltrim
      • max
      • MAXMV
      • MD5
      • millisecond
      • min
      • minmaxrange
      • MINMAXRANGEMV
      • MINMV
      • minute
      • MOD
      • mode
      • month
      • mult
      • now
      • percentile
      • percentileest
      • percentileestmv
      • percentilemv
      • percentiletdigest
      • percentiletdigestmv
      • percentilekll
      • percentilerawkll
      • percentilekllmv
      • percentilerawkllmv
      • quarter
      • regexpExtract
      • regexpReplace
      • remove
      • replace
      • reverse
      • round
      • ROW_NUMBER
      • rpad
      • rtrim
      • second
      • SEGMENTPARTITIONEDDISTINCTCOUNT
      • sha
      • sha256
      • sha512
      • sqrt
      • startswith
      • ST_AsBinary
      • ST_AsText
      • ST_Contains
      • ST_Distance
      • ST_GeogFromText
      • ST_GeogFromWKB
      • ST_GeometryType
      • ST_GeomFromText
      • ST_GeomFromWKB
      • STPOINT
      • ST_Polygon
      • strpos
      • ST_Union
      • SUB
      • substr
      • sum
      • summv
      • TIMECONVERT
      • timezoneHour
      • timezoneMinute
      • ToDateTime
      • ToEpoch
      • ToEpochBucket
      • ToEpochRounded
      • TOJSONMAPSTR
      • toGeometry
      • toSphericalGeography
      • trim
      • upper
      • Url
      • UTF8
      • VALUEIN
      • week
      • year
      • yearOfWeek
      • Extract
    • Plugin Reference
      • Stream Ingestion Connectors
      • VAR_POP
      • VAR_SAMP
      • STDDEV_POP
      • STDDEV_SAMP
  • Reference
    • Single-stage query engine (v1)
    • Multi-stage query engine (v2)
  • RESOURCES
    • Community
    • Team
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • Tableau
    • Trino
    • ThirdEye
    • Superset
    • Presto
    • Spark-Pinot Connector
  • Contributing
    • Contribute Pinot documentation
    • Style guide
Powered by GitBook
On this page
  • Signature
  • Usage Examples

Was this helpful?

Export as PDF
  1. Configuration Reference
  2. Functions

DISTINCTCOUNTRAWTHETASKETCH

This section contains reference documentation for the DISTINCTCOUNTRAWTHETASKETCH function.

PreviousDISTINCTCOUNTRAWHLLMVNextDISTINCTCOUNTTHETASKETCH

Was this helpful?

The framework enables set operations over a stream of data, and can also be used for cardinality estimation. Pinot leverages the and its extensions from the library org.apache.datasketches:datasketches-java:1.2.0-incubating to perform distinct counting as well as evaluating set operations.

Signature

DISTINCTCOUNTRAWTHETASKETCH(<thetaSketchColumn>, <thetaSketchParams>, predicate1, predicate2..., postAggregationExpressionToEvaluate) -> HexEncoded

  • thetaSketchColumn (required): Name of the column to aggregate on.

  • thetaSketchParams (required): Parameters for constructing the intermediate theta-sketches.

    • Currently, the only supported parameter is nominalEntries (defaults to 4096).

  • predicates (optional)_: _ These are individual predicates of form lhs <op> rhs which are applied on rows selected by the where clause. During intermediate sketch aggregation, sketches from the thetaSketchColumn that satisfies these predicates are unionized individually. For example, all filtered rows that match country=USA are unionized into a single sketch. Complex predicates that are created by combining (AND/OR) of individual predicates is supported.

  • postAggregationExpressionToEvaluate (required): The set operation to perform on the individual intermediate sketches for each of the predicates. Currently supported operations are SET_DIFF, SET_UNION, SET_INTERSECT , where DIFF requires two arguments and the UNION/INTERSECT allow more than two arguments.

Usage Examples

These examples are based on the .

select distinctCountRawThetaSketch(teamID) AS value
from baseballStats 
value

AgMDAAAKzJOVAAAAAACAPwDAATjfLK5fBJQy2rIU1GYLOK5a09G+XQ1UHWt00/NwFTC4EwzexhE3CHBSU+YIUzkM0goIADEeFViAmzCRcx5FeHrMHfGsU/qrFvMP+Q87UYRC7LFzZ0FV3PIfAF1FMFsM+E9XRwZRYoR79VdK7z1jAD/WClziDmb4Cosm3ctidcRl9VxfNTR47OUFqFP4dYQkZwXIEZtEhngdkGfqkQCKZPX85HITAZrwVDpI4TY6paDTZwLQNiemHFCUlEZCKcOMpkXuYypOxjzXi1ES+07IIH7EqrQeKcssHvOUh2gpzIDajYdQ4UTS6IBoXPB6AtbomPBiMalFURDzh+xppzrg5HcUTMW4Iuzgv5Mz/xIm73yOe7seghzwmH+zXUfda/mkaBqU6XQEAQFagTkndhYHHcjLb0OeQg4BGDAHtRIDD8EqsonkilQT6TZq2uM3CRXJQTlaYewzFvHsKivVomgcQRojVnPKBh0d0GgYeF4eIEXtD1bZTw43eVR1Dk6sBj3pjleOW21dRsUCRmyEDGdIfWQVJXouaUnZqaC9gi1oSrG7GT8HO2xXeb32OzfiHVx5s9+5bGpFXoXTu1n7g2Jone8JMyGuam2x7Bt55a1JdtFCFxhZ2Gd7IajHY4lNBH2lDfUoJed4f7kGUEXmlU6BCfwOkJ1CIoWBTQY+NToDhpmmmPY+rVOH5coybBHlH4vpfPBbbQsOjl0YBSC9uEmZ3WubqnV0KZ1p5d7wq/F0p7Wgo8y4JVXAobKCB+hsVckBNIA4XrYMzdWVSWeQsXHSuR+mWmJPftadyrMlfvoy2mVr8R4Dih7k3XNhXZwjBeuNJQA5Dtci6w0uIUczvEL+nY+9CSHEPQhuT//aluJ2De4Fk94cfWgaxqhYyh10TTIWZFmsDxJeOMaPT1BCwVRF6taOjftNbVDC5Fy1BtVzVIIUOGeBcj5VbhHtqowIB1qGEDIJy9ZBXD73iFBN5kVgvicaFGSKHGQqeIVsgOFdcFKITQTuV2d0pkljkPXKUIc68M0KPpU6iZYuaBA4+hGR9nri0tVnbJZOM1Z/fi01ou5YLYCoHTqkImozpJMYXLCqKtTBm2o7sc5oQATXUBC9dqM8xQoGL8OmltUWc1cX35rtD2D2zHL2IncEKMzsN/c6S31W74VTBtcbJfP9rHENp7yO453qYhA7m++jl2MKFzdvtkHqGDUcs9FKisV9Hx+ruhaGsLkdISszkZ3sYykjx3NH6BbbaCZf9jTswuxHKheTbaEDmSgrx7BfK+Z2My4jdMqCrEtKMSuJqEJ22AM5U8MNFVkCPTobkCEdJx0ZQJu+Tk73t1v3nqLUQH4PbFJzcUrr9yZFZ0u+1mzNNQ5o0w+v1dSRLGsXsPyRqGkQchuz/DKyrjJzf9Vb8HY4Ni63XiaXwgJrjq9rgAp6EmWV2xXUOI9CWZa7HsuRWO95m58nIq9K8VCkO+T/rWwrPqZ/tCgEtkshqecNhszQiki0d5Kf26o/YcATx4ZkJ655y4PTVr+kY0Xbb/UwEo2pPd3Hyd4hVz1I5N9TpYaJk2Lok1+7N+3LG+3Lj3KZtd5/+j8RujEmogI=

select distinctCountRawThetaSketch(teamID, 'nominalEntries=10') AS value
from baseballStats
value

AwMDAAAKzJMQAAAAAACAP4vpfPBbbQsO5N1zYV2cIwWFgU0GPjU6A4Z4HZBn6pEAyQE0gDhetgyKZPX85HITAQ4BGDAHtRIDEDub76OXYwoxK4moQnbYA9LogGhc8HoCE+k2atrjNwlVbhHtqowIBzd5VHUOTqwG+aRoGpTpdAT6PxG6MSaiAnshqMdjiU0EHEEaI1ZzygY=

We can also provide predicates and a post aggregation expression to compute more complicated cardinalities:

select distinctCountRawThetaSketch(
  yearID, 
  'nominalEntries=4096', 
  'teamID = ''SFN'' AND numberOfGames=28 AND homeRuns=1',
  'teamID = ''CHN'' AND numberOfGames=28 AND homeRuns=1',
  'SET_INTERSECT($1, $2)'
) AS value
from baseballStats 
value

AQMDAAA6zJN8QPYIsvHMNQ==

Theta Sketch
Sketch Class
Batch Quick Start