LogoLogo
release-1.0.0
release-1.0.0
  • Introduction
  • Basics
    • Concepts
    • Architecture
    • Components
      • Cluster
        • Tenant
        • Server
        • Controller
        • Broker
        • Minion
      • Table
        • Segment
          • Deep Store
        • Schema
      • Pinot Data Explorer
    • Getting Started
      • Running Pinot locally
      • Running Pinot in Docker
      • Quick Start Examples
      • Running in Kubernetes
      • Running on public clouds
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Batch import example
      • Stream ingestion example
      • HDFS as Deep Storage
      • Troubleshooting Pinot
      • Frequently Asked Questions (FAQs)
        • General
        • Pinot On Kubernetes FAQ
        • Ingestion FAQ
        • Query FAQ
        • Operations FAQ
    • Import Data
      • From Query Console
      • Batch Ingestion
        • Spark
        • Flink
        • Hadoop
        • Backfill Data
        • Dimension table
      • Stream ingestion
        • Apache Kafka
        • Amazon Kinesis
        • Apache Pulsar
      • Stream Ingestion with Upsert
      • Stream Ingestion with Dedup
      • Stream Ingestion with CLP
      • File Systems
        • Amazon S3
        • Azure Data Lake Storage
        • HDFS
        • Google Cloud Storage
      • Input formats
      • Complex Type (Array, Map) Handling
      • Reload a table segment
      • Upload a table segment
    • Indexing
      • Forward Index
      • Inverted Index
      • Star-Tree Index
      • Bloom Filter
      • Range Index
      • Native Text Index
      • Text search support
      • JSON Index
      • Geospatial
      • Timestamp Index
    • Releases
      • Apache Pinot™ 1.0.0 release notes
      • 0.12.1
      • 0.12.0
      • 0.11.0
      • 0.10.0
      • 0.9.3
      • 0.9.2
      • 0.9.1
      • 0.9.0
      • 0.8.0
      • 0.7.1
      • 0.6.0
      • 0.5.0
      • 0.4.0
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • GitHub Events Stream
  • For Users
    • Query
      • Querying Pinot
      • Querying JSON data
      • Query Options
      • Aggregation Functions
      • Cardinality Estimation
      • Explain Plan
      • Filtering with IdSet
      • GapFill Function For Time-Series Dataset
      • Grouping Algorithm
      • JOINs
      • Lookup UDF Join
      • Transformation Functions
      • User-Defined Functions (UDFs)
      • Window functions
    • APIs
      • Broker Query API
        • Query Response Format
      • Controller Admin API
      • Controller API Reference
    • External Clients
      • JDBC
      • Java
      • Python
      • Golang
    • Tutorials
      • Use OSS as Deep Storage for Pinot
      • Ingest Parquet Files from S3 Using Spark
      • Creating Pinot Segments
      • Use S3 as Deep Storage for Pinot
      • Use S3 and Pinot in Docker
      • Batch Data Ingestion In Practice
      • Schema Evolution
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Update documentation
    • Advanced
      • Data Ingestion Overview
      • Ingestion Aggregations
      • Ingestion Transformations
      • Null Value Support
      • Use the multi-stage query engine (v2)
      • Troubleshoot issues with the multi-stage query engine (v2)
      • Advanced Pinot Setup
    • Plugins
      • Write Custom Plugins
        • Input Format Plugin
        • Filesystem Plugin
        • Batch Segment Fetcher Plugin
        • Stream Ingestion Plugin
    • Design Documents
      • Segment Writer API
  • For Operators
    • Deployment and Monitoring
      • Set up cluster
      • Server Startup Status Checkers
      • Set up table
      • Set up ingestion
      • Decoupling Controller from the Data Path
      • Segment Assignment
      • Instance Assignment
      • Rebalance
        • Rebalance Servers
        • Rebalance Brokers
      • Separating data storage by age
        • Using multiple tenants
        • Using multiple directories
      • Pinot managed Offline flows
      • Minion merge rollup task
      • Consistent Push and Rollback
      • Access Control
      • Monitoring
      • Tuning
        • Real-time
        • Routing
        • Query Routing using Adaptive Server Selection
        • Query Scheduling
      • Upgrading Pinot with confidence
      • Managing Logs
      • OOM Protection Using Automatic Query Killing
    • Command-Line Interface (CLI)
    • Configuration Recommendation Engine
    • Tutorials
      • Authentication
        • Basic auth access control
        • ZkBasicAuthAccessControl
      • Configuring TLS/SSL
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Monitor Pinot using Prometheus and Grafana
      • Performance Optimization Configurations
  • Configuration Reference
    • Cluster
    • Controller
    • Broker
    • Server
    • Table
    • Schema
    • Ingestion Job Spec
    • Monitoring Metrics
    • Functions
      • ABS
      • ADD
      • ago
      • ARG_MIN / ARG_MAX
      • arrayConcatDouble
      • arrayConcatFloat
      • arrayConcatInt
      • arrayConcatLong
      • arrayConcatString
      • arrayContainsInt
      • arrayContainsString
      • arrayDistinctInt
      • arrayDistinctString
      • arrayIndexOfInt
      • arrayIndexOfString
      • ARRAYLENGTH
      • arrayRemoveInt
      • arrayRemoveString
      • arrayReverseInt
      • arrayReverseString
      • arraySliceInt
      • arraySliceString
      • arraySortInt
      • arraySortString
      • arrayUnionInt
      • arrayUnionString
      • AVGMV
      • Base64
      • caseWhen
      • ceil
      • CHR
      • codepoint
      • concat
      • count
      • COUNTMV
      • COVAR_POP
      • COVAR_SAMP
      • day
      • dayOfWeek
      • dayOfYear
      • DISTINCT
      • DISTINCTAVG
      • DISTINCTAVGMV
      • DISTINCTCOUNT
      • DISTINCTCOUNTBITMAP
      • DISTINCTCOUNTHLLMV
      • DISTINCTCOUNTHLL
      • DISTINCTCOUNTBITMAPMV
      • DISTINCTCOUNTMV
      • DISTINCTCOUNTRAWHLL
      • DISTINCTCOUNTRAWHLLMV
      • DISTINCTCOUNTRAWTHETASKETCH
      • DISTINCTCOUNTTHETASKETCH
      • DISTINCTSUM
      • DISTINCTSUMMV
      • DIV
      • DATETIMECONVERT
      • DATETRUNC
      • exp
      • FLOOR
      • FromDateTime
      • FromEpoch
      • FromEpochBucket
      • FUNNELCOUNT
      • Histogram
      • hour
      • isSubnetOf
      • JSONFORMAT
      • JSONPATH
      • JSONPATHARRAY
      • JSONPATHARRAYDEFAULTEMPTY
      • JSONPATHDOUBLE
      • JSONPATHLONG
      • JSONPATHSTRING
      • jsonextractkey
      • jsonextractscalar
      • length
      • ln
      • lower
      • lpad
      • ltrim
      • max
      • MAXMV
      • MD5
      • millisecond
      • min
      • minmaxrange
      • MINMAXRANGEMV
      • MINMV
      • minute
      • MOD
      • mode
      • month
      • mult
      • now
      • percentile
      • percentileest
      • percentileestmv
      • percentilemv
      • percentiletdigest
      • percentiletdigestmv
      • percentilekll
      • percentilerawkll
      • percentilekllmv
      • percentilerawkllmv
      • quarter
      • regexpExtract
      • regexpReplace
      • remove
      • replace
      • reverse
      • round
      • ROW_NUMBER
      • rpad
      • rtrim
      • second
      • SEGMENTPARTITIONEDDISTINCTCOUNT
      • sha
      • sha256
      • sha512
      • sqrt
      • startswith
      • ST_AsBinary
      • ST_AsText
      • ST_Contains
      • ST_Distance
      • ST_GeogFromText
      • ST_GeogFromWKB
      • ST_GeometryType
      • ST_GeomFromText
      • ST_GeomFromWKB
      • STPOINT
      • ST_Polygon
      • strpos
      • ST_Union
      • SUB
      • substr
      • sum
      • summv
      • TIMECONVERT
      • timezoneHour
      • timezoneMinute
      • ToDateTime
      • ToEpoch
      • ToEpochBucket
      • ToEpochRounded
      • TOJSONMAPSTR
      • toGeometry
      • toSphericalGeography
      • trim
      • upper
      • Url
      • UTF8
      • VALUEIN
      • week
      • year
      • yearOfWeek
      • Extract
    • Plugin Reference
      • Stream Ingestion Connectors
      • VAR_POP
      • VAR_SAMP
      • STDDEV_POP
      • STDDEV_SAMP
  • Reference
    • Single-stage query engine (v1)
    • Multi-stage query engine (v2)
  • RESOURCES
    • Community
    • Team
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • Tableau
    • Trino
    • ThirdEye
    • Superset
    • Presto
    • Spark-Pinot Connector
  • Contributing
    • Contribute Pinot documentation
    • Style guide
Powered by GitBook
On this page
  • Batch Processing
  • Batch JSON
  • Batch with complex data types
  • Streaming
  • Streaming JSON
  • Streaming with minion cleanup
  • Streaming with complex data types
  • Upsert
  • Upsert JSON
  • Hybrid
  • Join

Was this helpful?

Export as PDF
  1. Basics
  2. Getting Started

Quick Start Examples

This section describes quick start commands that launch all Pinot components in a single process.

PreviousRunning Pinot in DockerNextRunning in Kubernetes

Was this helpful?

Pinot ships with QuickStart commands that launch Pinot components in a single process and import pre-built datasets. These quick start examples are a good place if you're just getting started with Pinot. The examples begin with the example, after the following notes:

  • Prerequisites

    You must have either or . The examples are available in each option and work the same. The decision of which to choose depends on your installation preference and how you generally like to work. If you don't know which to choose, using Docker will make your cleanup easier after you are done with the examples.

  • Pinot versions in examples

    The Docker-based examples on this page use pinot:latest, which instructs Docker to pull and use the most recent release of Apache Pinot. If you prefer to use a specific release instead, you can designate it by replacing latest with the release number, like this: pinot:0.12.1.

    The local install-based examples that are run using the launcher scripts will use the Apache Pinot version you installed.

  • Running examples with Docker on a Mac with an M1 or M2 CPU

    Add the -arm64 suffix to the run commands, like this:

    docker run \
        -p 9000:9000 \
        apachepinot/pinot:latest-arm64 QuickStart \
        -type batch
  • Stopping a running example

    To stop a running example, enter Ctrl+C in the same terminal where you ran the docker run command to start the example.

macOS Monterey Users

By default the Airplay receiver server runs on port 7000, which is also the port used by the Pinot Server in the Quick Start. You may see the following error when running these examples:

Failed to start a Pinot [SERVER]
java.lang.RuntimeException: java.net.BindException: Address already in use
	at org.apache.pinot.core.transport.QueryServer.start(QueryServer.java:103) ~[pinot-all-0.9.0-jar-with-dependencies.jar:0.9.0-cf8b84e8b0d6ab62374048de586ce7da21132906]
	at org.apache.pinot.server.starter.ServerInstance.start(ServerInstance.java:158) ~[pinot-all-0.9.0-jar-with-dependencies.jar:0.9.0-cf8b84e8b0d6ab62374048de586ce7da21132906]
	at org.apache.helix.manager.zk.ParticipantManager.handleNewSession(ParticipantManager.java:110) ~[pinot-all-0.9.0-jar-with-dependencies.jar:0.9.0-cf8b84e8b0d6ab62374048de586ce7da2113

If you disable the Airplay receiver server and try again, you shouldn't see this error message anymore.

Batch Processing

This example demonstrates how to do batch processing with Pinot. The command:

  • Starts Apache Zookeeper, Pinot Controller, Pinot Broker, and Pinot Server.

  • Creates the baseballStats table

  • Launches a standalone data ingestion job that builds one segment for a given CSV data file for the baseballStats table and pushes the segment to the Pinot Controller.

  • Issues sample queries to Pinot

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type batch
./bin/pinot-admin.sh QuickStart -type batch

Batch JSON

This example demonstrates how to import and query JSON documents in Pinot. The command:

  • Starts Apache Zookeeper, Pinot Controller, Pinot Broker, and Pinot Server.

  • Creates the githubEvents table

  • Launches a standalone data ingestion job that builds one segment for a given JSON data file for the githubEvents table and pushes the segment to the Pinot Controller.

  • Issues sample queries to Pinot

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type batch_json_index
./bin/pinot-admin.sh QuickStart -type batch_json_index

Batch with complex data types

This example demonstrates how to do batch processing in Pinot where the the data items have complex fields that need to be unnested. The command:

  • Starts Apache Zookeeper, Pinot Controller, Pinot Broker, and Pinot Server.

  • Creates the githubEvents table

  • Launches a standalone data ingestion job that builds one segment for a given JSON data file for the githubEvents table and pushes the segment to the Pinot Controller.

  • Issues sample queries to Pinot

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type batch_complex_type
./bin/pinot-admin.sh QuickStart -type batch_complex_type

Streaming

This example demonstrates how to do stream processing with Pinot. The command:

  • Starts Apache Kafka, Apache Zookeeper, Pinot Controller, Pinot Broker, and Pinot Server.

  • Creates meetupRsvp table

  • Launches a meetup stream

  • Publishes data to a Kafka topic meetupRSVPEvents that is subscribed to by Pinot.

  • Issues sample queries to Pinot

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type stream
./bin/pinot-admin.sh QuickStart -type stream

Streaming JSON

This example demonstrates how to do stream processing with JSON documents in Pinot. The command:

  • Starts Apache Kafka, Apache Zookeeper, Pinot Controller, Pinot Broker, and Pinot Server.

  • Creates meetupRsvp table

  • Launches a meetup stream

  • Publishes data to a Kafka topic meetupRSVPEvents that is subscribed to by Pinot

  • Issues sample queries to Pinot

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type stream_json_index
./bin/pinot-admin.sh QuickStart -type stream_json_index

Streaming with minion cleanup

This example demonstrates how to do stream processing in Pinot with RealtimeToOfflineSegmentsTask and MergeRollupTask minion tasks continuously optimizing segments as data gets ingested. The command:

  • Starts Apache Kafka, Apache Zookeeper, Pinot Controller, Pinot Broker, Pinot Minion, and Pinot Server.

  • Creates githubEvents table

  • Launches a GitHub events stream

  • Publishes data to a Kafka topic githubEvents that is subscribed to by Pinot.

  • Issues sample queries to Pinot

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type realtime_minion
./bin/pinot-admin.sh QuickStart -type realtime_minion

Streaming with complex data types

This example demonstrates how to do stream processing in Pinot where the stream contains items that have complex fields that need to be unnested. The command:

  • Starts Apache Kafka, Apache Zookeeper, Pinot Controller, Pinot Broker, Pinot Minion, and Pinot Server.

  • Creates meetupRsvp table

  • Launches a meetup stream

  • Publishes data to a Kafka topic meetupRSVPEvents that is subscribed to by Pinot.

  • Issues sample queries to Pinot

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type stream_complex_type
./bin/pinot-admin.sh QuickStart -type stream_complex_type

Upsert

  • Starts Apache Kafka, Apache Zookeeper, Pinot Controller, Pinot Broker, and Pinot Server.

  • Creates meetupRsvp table

  • Launches a meetup stream

  • Publishes data to a Kafka topic meetupRSVPEvents that is subscribed to by Pinot

  • Issues sample queries to Pinot

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type upsert
./bin/pinot-admin.sh QuickStart -type upsert

Upsert JSON

  • Starts Apache Kafka, Apache Zookeeper, Pinot Controller, Pinot Broker, and Pinot Server.

  • Creates meetupRsvp table

  • Launches a meetup stream

  • Publishes data to a Kafka topic meetupRSVPEvents that is subscribed to by Pinot

  • Issues sample queries to Pinot

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type upsert_json_index
./bin/pinot-admin.sh QuickStart -type upsert_json_index

Hybrid

This example demonstrates how to do hybrid stream and batch processing with Pinot. The command:

  1. Starts Apache Kafka, Apache Zookeeper, Pinot Controller, Pinot Broker, and Pinot Server.

  2. Creates airlineStats table

  3. Launches a standalone data ingestion job that builds segments under a given directory of Avro files for the airlineStats table and pushes the segments to the Pinot Controller.

  4. Launches a stream of flights stats

  5. Publishes data to a Kafka topic airlineStatsEvents that is subscribed to by Pinot.

  6. Issues sample queries to Pinot

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type hybrid
./bin/pinot-admin.sh QuickStart -type hybrid

Join

  • Starts Apache Zookeeper, Pinot Controller, Pinot Broker, and Pinot Server in the same container.

  • Creates the baseballStats table

  • Launches a data ingestion job that builds one segment for a given CSV data file for the baseballStats table and pushes the segment to the Pinot Controller.

  • Creates the dimBaseballTeams table

  • Launches a data ingestion job that builds one segment for a given CSV data file for the dimBaseballStats table and pushes the segment to the Pinot Controller.

  • Issues sample queries to Pinot

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type join
./bin/pinot-admin.sh QuickStart -type join

This example demonstrates how to do with Pinot. The command:

This example demonstrates how to do with JSON documents in Pinot. The command:

This example demonstrates how to do joins in Pinot using the . The command:

stream processing with upsert
stream processing with upsert
Lookup UDF
installed Pinot locally
have Docker installed if you want to use the Pinot Docker image
Batch Processing