LogoLogo
release-0.9.0
release-0.9.0
  • Introduction
  • Basics
    • Concepts
    • Architecture
    • Components
      • Cluster
      • Controller
      • Broker
      • Server
      • Minion
      • Tenant
      • Schema
      • Table
      • Segment
      • Pinot Data Explorer
    • Getting Started
      • Running Pinot locally
      • Running Pinot in Docker
      • Running Pinot in Kubernetes
      • Public cloud examples
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Hdfs as Deep Storage
      • Manual cluster setup
      • Batch import example
      • Stream ingestion example
      • Troubleshooting Pinot
      • Frequently Asked Questions (FAQs)
        • General
        • Pinot On Kubernetes FAQ
        • Ingestion FAQ
        • Query FAQ
        • Operations FAQ
    • Import Data
      • Batch Ingestion
        • Spark
        • Hadoop
        • Backfill Data
        • Dimension Table
      • Stream ingestion
        • Apache Kafka
        • Amazon Kinesis
      • Stream Ingestion with Upsert
      • File systems
        • Amazon S3
        • Azure Data Lake Storage
        • HDFS
        • Google Cloud Storage
      • Input formats
      • Complex Type (Array, Map) Handling
    • Indexing
      • Forward Index
      • Inverted Index
      • Star-Tree Index
      • Bloom Filter
      • Range Index
      • Text search support
      • JSON Index
      • Geospatial
    • Releases
      • 0.9.0
      • 0.8.0
      • 0.7.1
      • 0.6.0
      • 0.5.0
      • 0.4.0
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • GitHub Events Stream
  • For Users
    • Query
      • Querying Pinot
      • Filtering with IdSet
      • Supported Transformations
      • Supported Aggregations
      • User-Defined Functions (UDFs)
      • Cardinality Estimation
      • Lookup UDF Join
      • Querying JSON data
    • APIs
      • Broker Query API
        • Query Response Format
      • Controller Admin API
    • External Clients
      • JDBC
      • Java
      • Python
      • Golang
    • Tutorials
      • Use OSS as Deep Storage for Pinot
      • Ingest Parquet Files from S3 Using Spark
      • Creating Pinot Segments
      • Use S3 as Deep Storage for Pinot
      • Use S3 and Pinot in Docker
      • Batch Data Ingestion In Practice
      • Schema Evolution
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Update Documentation
    • Advanced
      • Data Ingestion Overview
      • Ingestion Transformations
      • Null Value Support
      • Advanced Pinot Setup
    • Plugins
      • Write Custom Plugins
        • Input Format Plugin
        • Filesystem Plugin
        • Batch Segment Fetcher Plugin
        • Stream Ingestion Plugin
    • Design Documents
      • Segment Writer API
  • For Operators
    • Deployment and Monitoring
      • Setup cluster
      • Setup table
      • Setup ingestion
      • Decoupling Controller from the Data Path
      • Segment Assignment
      • Instance Assignment
      • Rebalance
        • Rebalance Servers
        • Rebalance Brokers
      • Tiered Storage
      • Pinot managed Offline flows
      • Minion merge rollup task
      • Access Control
      • Monitoring
      • Tuning
        • Realtime
        • Routing
      • Upgrading Pinot with confidence
    • Command-Line Interface (CLI)
    • Configuration Recommendation Engine
    • Tutorials
      • Authentication, Authorization, and ACLs
      • Configuring TLS/SSL
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Monitor Pinot using Prometheus and Grafana
  • Configuration Reference
    • Cluster
    • Controller
    • Broker
    • Server
    • Table
    • Schema
    • Ingestion Job Spec
  • RESOURCES
    • Community
    • Team
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • Tableau
    • Trino
    • ThirdEye
    • Superset
    • Presto
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Basics
  2. Import Data

File systems

This section contains a collection of short guides to show you how to import from a Pinot supported file system.

PreviousStream Ingestion with UpsertNextAmazon S3

Last updated 3 years ago

Was this helpful?

FileSystem is an abstraction provided by Pinot to access data in distributed file systems

Pinot uses the distributed file systems or the following purposes -

  • Batch Ingestion Job - To read the input data (CSV, Avro, Thrift etc.) and to write generated segments to DFS

  • Controller - When a segment is uploaded to controller, the controller saves it in the DFS configured.

  • Server - When a server(s) is notified of a new segment, the server copy the segment from remote DFS to their local node using the DFS abstraction

Pinot allows you to choose the distributed file system provider. Currently, the following file systems are supported by Pinot out of the box.

To use a distributed file-system, you need to enable plugins in pinot. To do that, specify the plugin directory and include the required plugins -

-Dplugins.dir=/opt/pinot/plugins -Dplugins.include=pinot-plugin-to-include-1,pinot-plugin-to-include-2

Now, You can proceed to change the filesystem in the controller and server config as follows -

#CONTROLLER

pinot.controller.storage.factory.class.[scheme]=className of the pinot file systems
pinot.controller.segment.fetcher.protocols=file,http,[scheme]
pinot.controller.segment.fetcher.[scheme].class=org.apache.pinot.common.utils.fetcher.PinotFSSegmentFetcher
#SERVER

pinot.server.storage.factory.class.[scheme]=className of the pinotfile systems
pinot.server.segment.fetcher.protocols=file,http,[scheme]
pinot.server.segment.fetcher.[scheme].class=org.apache.pinot.common.utils.fetcher.PinotFSSegmentFetcher

Here, scheme refers to the prefix used in URI of the filesystem. e.g. for the URI, s3://bucket/path/to/file the scheme is s3

You can also change the filesystem during ingestion. In the ingestion job spec, specify the filesystem with the following config -

pinotFSSpecs
  - scheme: file
    className: org.apache.pinot.spi.filesystem.LocalPinotFS
Amazon S3
Google Cloud Storage
HDFS
Azure Data Lake Storage