LogoLogo
release-0.9.0
release-0.9.0
  • Introduction
  • Basics
    • Concepts
    • Architecture
    • Components
      • Cluster
      • Controller
      • Broker
      • Server
      • Minion
      • Tenant
      • Schema
      • Table
      • Segment
      • Pinot Data Explorer
    • Getting Started
      • Running Pinot locally
      • Running Pinot in Docker
      • Running Pinot in Kubernetes
      • Public cloud examples
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Hdfs as Deep Storage
      • Manual cluster setup
      • Batch import example
      • Stream ingestion example
      • Troubleshooting Pinot
      • Frequently Asked Questions (FAQs)
        • General
        • Pinot On Kubernetes FAQ
        • Ingestion FAQ
        • Query FAQ
        • Operations FAQ
    • Import Data
      • Batch Ingestion
        • Spark
        • Hadoop
        • Backfill Data
        • Dimension Table
      • Stream ingestion
        • Apache Kafka
        • Amazon Kinesis
      • Stream Ingestion with Upsert
      • File systems
        • Amazon S3
        • Azure Data Lake Storage
        • HDFS
        • Google Cloud Storage
      • Input formats
      • Complex Type (Array, Map) Handling
    • Indexing
      • Forward Index
      • Inverted Index
      • Star-Tree Index
      • Bloom Filter
      • Range Index
      • Text search support
      • JSON Index
      • Geospatial
    • Releases
      • 0.9.0
      • 0.8.0
      • 0.7.1
      • 0.6.0
      • 0.5.0
      • 0.4.0
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • GitHub Events Stream
  • For Users
    • Query
      • Querying Pinot
      • Filtering with IdSet
      • Supported Transformations
      • Supported Aggregations
      • User-Defined Functions (UDFs)
      • Cardinality Estimation
      • Lookup UDF Join
      • Querying JSON data
    • APIs
      • Broker Query API
        • Query Response Format
      • Controller Admin API
    • External Clients
      • JDBC
      • Java
      • Python
      • Golang
    • Tutorials
      • Use OSS as Deep Storage for Pinot
      • Ingest Parquet Files from S3 Using Spark
      • Creating Pinot Segments
      • Use S3 as Deep Storage for Pinot
      • Use S3 and Pinot in Docker
      • Batch Data Ingestion In Practice
      • Schema Evolution
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Update Documentation
    • Advanced
      • Data Ingestion Overview
      • Ingestion Transformations
      • Null Value Support
      • Advanced Pinot Setup
    • Plugins
      • Write Custom Plugins
        • Input Format Plugin
        • Filesystem Plugin
        • Batch Segment Fetcher Plugin
        • Stream Ingestion Plugin
    • Design Documents
      • Segment Writer API
  • For Operators
    • Deployment and Monitoring
      • Setup cluster
      • Setup table
      • Setup ingestion
      • Decoupling Controller from the Data Path
      • Segment Assignment
      • Instance Assignment
      • Rebalance
        • Rebalance Servers
        • Rebalance Brokers
      • Tiered Storage
      • Pinot managed Offline flows
      • Minion merge rollup task
      • Access Control
      • Monitoring
      • Tuning
        • Realtime
        • Routing
      • Upgrading Pinot with confidence
    • Command-Line Interface (CLI)
    • Configuration Recommendation Engine
    • Tutorials
      • Authentication, Authorization, and ACLs
      • Configuring TLS/SSL
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Monitor Pinot using Prometheus and Grafana
  • Configuration Reference
    • Cluster
    • Controller
    • Broker
    • Server
    • Table
    • Schema
    • Ingestion Job Spec
  • RESOURCES
    • Community
    • Team
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • Tableau
    • Trino
    • ThirdEye
    • Superset
    • Presto
Powered by GitBook
On this page
  • Query Console
  • Rest API

Was this helpful?

Export as PDF
  1. Basics
  2. Components

Pinot Data Explorer

Explore the data on our Pinot cluster

PreviousSegmentNextGetting Started

Last updated 3 years ago

Was this helpful?

Once you have set up the Cluster, you can start exploring the data and the APIs. Pinot 0.5.0 comes bundled with a completely new UI.

Navigate to in your browser to open the controller UI.

Let's take a look at the following two features on the UI

Query Console

We can see our baseballStats table listed on the left (you will see meetupRSVP or airlineStats if you used the streaming or the hybrid quick start). Click on the table name to display all the names along with the data types of the columns of the table. You can also execute a sample query select * from baseballStats limit 10 by typing it in the text box and clicking the Run Query button.

Cmd + Enter can also be used to run the query when focused on the console.

You can also try out the following queries:

select playerName, max(hits) 
from baseballStats 
group by playerName 
order by max(hits) desc
select sum(hits), sum(homeRuns), sum(numberOfGames) 
from baseballStats 
where yearID > 2010
select * 
from baseballStats 
order by league

Rest API

{
  "schemaName": "baseballStats",
  "dimensionFieldSpecs": [
    {
      "name": "playerID",
      "dataType": "STRING"
    },
    {
      "name": "yearID",
      "dataType": "INT"
    },
    {
      "name": "teamID",
      "dataType": "STRING"
    },
    {
      "name": "league",
      "dataType": "STRING"
    },
    {
      "name": "playerName",
      "dataType": "STRING"
    }
  ],
  "metricFieldSpecs": [
    {
      "name": "playerStint",
      "dataType": "INT"
    },
    {
      "name": "numberOfGames",
      "dataType": "INT"
    },
    {
      "name": "numberOfGamesAsBatter",
      "dataType": "INT"
    },
    {
      "name": "AtBatting",
      "dataType": "INT"
    },
    {
      "name": "runs",
      "dataType": "INT"
    },
    {
      "name": "hits",
      "dataType": "INT"
    },
    {
      "name": "doules",
      "dataType": "INT"
    },
    {
      "name": "tripples",
      "dataType": "INT"
    },
    {
      "name": "homeRuns",
      "dataType": "INT"
    },
    {
      "name": "runsBattedIn",
      "dataType": "INT"
    },
    {
      "name": "stolenBases",
      "dataType": "INT"
    },
    {
      "name": "caughtStealing",
      "dataType": "INT"
    },
    {
      "name": "baseOnBalls",
      "dataType": "INT"
    },
    {
      "name": "strikeouts",
      "dataType": "INT"
    },
    {
      "name": "intentionalWalks",
      "dataType": "INT"
    },
    {
      "name": "hitsByPitch",
      "dataType": "INT"
    },
    {
      "name": "sacrificeHits",
      "dataType": "INT"
    },
    {
      "name": "sacrificeFlies",
      "dataType": "INT"
    },
    {
      "name": "groundedIntoDoublePlays",
      "dataType": "INT"
    },
    {
      "name": "G_old",
      "dataType": "INT"
    }
  ]
}

Let us run some queries on the data in the Pinot cluster. Head over to to see the querying interface.

Pinot supports a subset of standard SQL. For more information, see .

The contains all the APIs that you will need to operate and manage your cluster. It provides a set of APIs for Pinot cluster management including health check, instances management, schema and table management, data segments management.

Let's check out the tables in this cluster by going to and click on Try it out!. We can see thebaseballStats table listed here. We can also see the exactcurl call made to the controller API.

You can look at the configuration of this table by going to , type in baseballStats in the table name, and click Try it out!

Let's check out the schemas in the cluster by going to and click Try it out!. We can see a schema called baseballStats in this list.

Take a look at the schema by going to , type baseballStats in the schema name, and click Try it out!.

Finally, let's checkout the data segments in the cluster by going to , type in baseballStats in the table name, and click Try it out!. There's 1 segment for this table, called baseballStats_OFFLINE_0.

To learn how to uploaded your own data and schema, head over to or .

Query Console
Pinot Query Language
Pinot Admin UI
Table -> List all tables in cluster
Tables -> Get/Enable/Disable/Drop a table
Schema -> List all schemas in the cluster
Schema -> Get a schema
Segment -> List all segments
Batch Ingestion
Stream ingestion
http://localhost:9000
List all tables in cluster
List all schemas in the cluster