LogoLogo
release-0.10.0
release-0.10.0
  • Introduction
  • Basics
    • Concepts
    • Architecture
    • Components
      • Cluster
      • Controller
      • Broker
      • Server
      • Minion
      • Tenant
      • Schema
      • Table
      • Segment
      • Deep Store
      • Pinot Data Explorer
    • Getting Started
      • Running Pinot locally
      • Running Pinot in Docker
      • Quick Start Examples
      • Running in Kubernetes
      • Running on public clouds
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Batch import example
      • Stream ingestion example
      • HDFS as Deep Storage
      • Troubleshooting Pinot
      • Frequently Asked Questions (FAQs)
        • General
        • Pinot On Kubernetes FAQ
        • Ingestion FAQ
        • Query FAQ
        • Operations FAQ
    • Import Data
      • Batch Ingestion
        • Spark
        • Hadoop
        • Backfill Data
        • Dimension Table
      • Stream ingestion
        • Apache Kafka
        • Amazon Kinesis
        • Apache Pulsar
      • Stream Ingestion with Upsert
      • File Systems
        • Amazon S3
        • Azure Data Lake Storage
        • HDFS
        • Google Cloud Storage
      • Input formats
      • Complex Type (Array, Map) Handling
    • Indexing
      • Forward Index
      • Inverted Index
      • Star-Tree Index
      • Bloom Filter
      • Range Index
      • Text search support
      • JSON Index
      • Geospatial
      • Timestamp Index
    • Releases
      • 0.10.0
      • 0.9.3
      • 0.9.2
      • 0.9.1
      • 0.9.0
      • 0.8.0
      • 0.7.1
      • 0.6.0
      • 0.5.0
      • 0.4.0
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • GitHub Events Stream
  • For Users
    • Query
      • Querying Pinot
      • Filtering with IdSet
      • Transformation Functions
      • Aggregation Functions
      • User-Defined Functions (UDFs)
      • Cardinality Estimation
      • Lookup UDF Join
      • Querying JSON data
      • Explain Plan
      • Grouping Algorithm
    • APIs
      • Broker Query API
        • Query Response Format
      • Controller Admin API
    • External Clients
      • JDBC
      • Java
      • Python
      • Golang
    • Tutorials
      • Use OSS as Deep Storage for Pinot
      • Ingest Parquet Files from S3 Using Spark
      • Creating Pinot Segments
      • Use S3 as Deep Storage for Pinot
      • Use S3 and Pinot in Docker
      • Batch Data Ingestion In Practice
      • Schema Evolution
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Update Documentation
    • Advanced
      • Data Ingestion Overview
      • Ingestion Transformations
      • Null Value Support
      • Advanced Pinot Setup
    • Plugins
      • Write Custom Plugins
        • Input Format Plugin
        • Filesystem Plugin
        • Batch Segment Fetcher Plugin
        • Stream Ingestion Plugin
    • Design Documents
      • Segment Writer API
  • For Operators
    • Deployment and Monitoring
      • Setup cluster
      • Setup table
      • Setup ingestion
      • Decoupling Controller from the Data Path
      • Segment Assignment
      • Instance Assignment
      • Rebalance
        • Rebalance Servers
        • Rebalance Brokers
      • Tiered Storage
      • Pinot managed Offline flows
      • Minion merge rollup task
      • Access Control
      • Monitoring
      • Tuning
        • Realtime
        • Routing
      • Upgrading Pinot with confidence
    • Command-Line Interface (CLI)
    • Configuration Recommendation Engine
    • Tutorials
      • Authentication, Authorization, and ACLs
      • Configuring TLS/SSL
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Monitor Pinot using Prometheus and Grafana
  • Configuration Reference
    • Cluster
    • Controller
    • Broker
    • Server
    • Table
    • Schema
    • Ingestion Job Spec
    • Functions
      • ABS
      • ADD
      • arrayConcatInt
      • arrayConcatString
      • arrayContainsInt
      • arrayContainsString
      • arrayDistinctString
      • arrayDistinctInt
      • arrayIndexOfInt
      • arrayIndexOfString
      • ARRAYLENGTH
      • arrayRemoveInt
      • arrayRemoveString
      • arrayReverseInt
      • arrayReverseString
      • arraySliceInt
      • arraySliceString
      • arraySortInt
      • arraySortString
      • arrayUnionInt
      • arrayUnionString
      • AVGMV
      • ceil
      • CHR
      • codepoint
      • concat
      • count
      • COUNTMV
      • day
      • dayOfWeek
      • dayOfYear
      • DISTINCT
      • DISTINCTCOUNT
      • DISTINCTCOUNTBITMAP
      • DISTINCTCOUNTBITMAPMV
      • DISTINCTCOUNTHLL
      • DISTINCTCOUNTHLLMV
      • DISTINCTCOUNTMV
      • DISTINCTCOUNTRAWHLL
      • DISTINCTCOUNTRAWHLLMV
      • DISTINCTCOUNTRAWTHETASKETCH
      • DISTINCTCOUNTTHETASKETCH
      • DIV
      • DATETIMECONVERT
      • DATETRUNC
      • exp
      • FLOOR
      • FromDateTime
      • FromEpoch
      • FromEpochBucket
      • hour
      • JSONFORMAT
      • JSONPATH
      • JSONPATHARRAY
      • JSONPATHARRAYDEFAULTEMPTY
      • JSONPATHDOUBLE
      • JSONPATHLONG
      • JSONPATHSTRING
      • jsonextractkey
      • jsonextractscalar
      • length
      • ln
      • lower
      • lpad
      • ltrim
      • max
      • MAXMV
      • MD5
      • millisecond
      • min
      • minmaxrange
      • MINMAXRANGEMV
      • MINMV
      • minute
      • MOD
      • mode
      • month
      • mult
      • now
      • percentile
      • percentileest
      • percentileestmv
      • percentilemv
      • percentiletdigest
      • percentiletdigestmv
      • quarter
      • regexpExtract
      • remove
      • replace
      • reverse
      • round
      • rpad
      • rtrim
      • second
      • SEGMENTPARTITIONEDDISTINCTCOUNT
      • sha
      • sha256
      • sha512
      • sqrt
      • startswith
      • ST_AsBinary
      • ST_AsText
      • ST_Contains
      • ST_Distance
      • ST_GeogFromText
      • ST_GeogFromWKB
      • ST_GeometryType
      • ST_GeomFromText
      • ST_GeomFromWKB
      • STPOINT
      • ST_Polygon
      • strpos
      • ST_Union
      • SUB
      • substr
      • sum
      • summv
      • TIMECONVERT
      • timezoneHour
      • timezoneMinute
      • ToDateTime
      • ToEpoch
      • ToEpochBucket
      • ToEpochRounded
      • TOJSONMAPSTR
      • toGeometry
      • toSphericalGeography
      • trim
      • upper
      • VALUEIN
      • week
      • year
      • yearOfWeek
  • RESOURCES
    • Community
    • Team
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • Tableau
    • Trino
    • ThirdEye
    • Superset
    • Presto
Powered by GitBook
On this page
  • Installation
  • Usage
  • Query Pinot
  • Response Format

Was this helpful?

Export as PDF
  1. For Users
  2. External Clients

Golang

Pinot Client for Golang

PreviousPythonNextTutorials

Last updated 3 years ago

Was this helpful?

Pinot also provides to query database directly from go application.

Installation

Please follow this link to install and start Pinot batch QuickStart locally.

bin/quick-start-batch.sh

Check out Client library Github Repo

git clone git@github.com:xiangfu0/pinot-client-go.git
cd pinot-client-go

Build and run the example application to query from Pinot Batch Quickstart

go build ./examples/batch-quickstart
./batch-quickstart

Usage

Create a Pinot Connection

Pinot client could be initialized through:

1. Zookeeper Path.

pinotClient := pinot.NewFromZookeeper([]string{"localhost:2123"}, "", "QuickStartCluster")

2. A list of broker addresses.

pinotClient := pinot.NewFromBrokerList([]string{"localhost:8000"})

3. ClientConfig

pinotClient := pinot.NewWithConfig(&pinot.ClientConfig{
	ZkConfig: &pinot.ZookeeperConfig{
		ZookeeperPath:     zkPath,
		PathPrefix:        strings.Join([]string{zkPathPrefix, pinotCluster}, "/"),
		SessionTimeoutSec: defaultZkSessionTimeoutSec,
	},
    ExtraHTTPHeader: map[string]string{
        "extra-header":"value",
    },
})

Query Pinot

Code snippet:

pinotClient, err := pinot.NewFromZookeeper([]string{"localhost:2123"}, "", "QuickStartCluster")
if err != nil {
    log.Error(err)
}
brokerResp, err := pinotClient.ExecuteSQL("baseballStats", "select count(*) as cnt, sum(homeRuns) as sum_homeRuns from baseballStats group by teamID limit 10")
if err != nil {
    log.Error(err)
}
log.Infof("Query Stats: response time - %d ms, scanned docs - %d, total docs - %d", brokerResp.TimeUsedMs, brokerResp.NumDocsScanned, brokerResp.TotalDocs)

Response Format

Query Response is defined as the struct of following:

type BrokerResponse struct {
	AggregationResults          []*AggregationResult `json:"aggregationResults,omitempty"`
	SelectionResults            *SelectionResults    `json:"SelectionResults,omitempty"`
	ResultTable                 *ResultTable         `json:"resultTable,omitempty"`
	Exceptions                  []Exception          `json:"exceptions"`
	TraceInfo                   map[string]string    `json:"traceInfo,omitempty"`
	NumServersQueried           int                  `json:"numServersQueried"`
	NumServersResponded         int                  `json:"numServersResponded"`
	NumSegmentsQueried          int                  `json:"numSegmentsQueried"`
	NumSegmentsProcessed        int                  `json:"numSegmentsProcessed"`
	NumSegmentsMatched          int                  `json:"numSegmentsMatched"`
	NumConsumingSegmentsQueried int                  `json:"numConsumingSegmentsQueried"`
	NumDocsScanned              int64                `json:"numDocsScanned"`
	NumEntriesScannedInFilter   int64                `json:"numEntriesScannedInFilter"`
	NumEntriesScannedPostFilter int64                `json:"numEntriesScannedPostFilter"`
	NumGroupsLimitReached       bool                 `json:"numGroupsLimitReached"`
	TotalDocs                   int64                `json:"totalDocs"`
	TimeUsedMs                  int                  `json:"timeUsedMs"`
	MinConsumingFreshnessTimeMs int64                `json:"minConsumingFreshnessTimeMs"`
}

Note that AggregationResults and SelectionResults are holders for PQL queries.

Meanwhile ResultTable is the holder for SQL queries. ResultTable is defined as:

// ResultTable is a ResultTable
type ResultTable struct {
	DataSchema RespSchema      `json:"dataSchema"`
	Rows       [][]interface{} `json:"rows"`
}

RespSchema is defined as:

// RespSchema is response schema
type RespSchema struct {
	ColumnDataTypes []string `json:"columnDataTypes"`
	ColumnNames     []string `json:"columnNames"`
}

There are multiple functions defined for ResultTable, like:

func (r ResultTable) GetRowCount() int
func (r ResultTable) GetColumnCount() int
func (r ResultTable) GetColumnName(columnIndex int) string
func (r ResultTable) GetColumnDataType(columnIndex int) string
func (r ResultTable) Get(rowIndex int, columnIndex int) interface{}
func (r ResultTable) GetString(rowIndex int, columnIndex int) string
func (r ResultTable) GetInt(rowIndex int, columnIndex int) int
func (r ResultTable) GetLong(rowIndex int, columnIndex int) int64
func (r ResultTable) GetFloat(rowIndex int, columnIndex int) float32
func (r ResultTable) GetDouble(rowIndex int, columnIndex int) float64
// Print Response Schema
for c := 0; c < brokerResp.ResultTable.GetColumnCount(); c++ {
  fmt.Printf("%s(%s)\t", brokerResp.ResultTable.GetColumnName(c), brokerResp.ResultTable.GetColumnDataType(c))
}
fmt.Println()

// Print Row Table
for r := 0; r < brokerResp.ResultTable.GetRowCount(); r++ {
  for c := 0; c < brokerResp.ResultTable.GetColumnCount(); c++ {
    fmt.Printf("%v\t", brokerResp.ResultTable.Get(r, c))
  }
  fmt.Println()
}

Please see this for your reference.

Sample Usage is

a native go client
Pinot Quickstart
example
here