LogoLogo
release-1.1.0
release-1.1.0
  • Introduction
  • Basics
    • Concepts
    • Architecture
    • Components
      • Cluster
        • Tenant
        • Server
        • Controller
        • Broker
        • Minion
      • Table
        • Segment
          • Deep Store
        • Schema
      • Pinot Data Explorer
    • Getting Started
      • Running Pinot locally
      • Running Pinot in Docker
      • Quick Start Examples
      • Running in Kubernetes
      • Running on public clouds
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Create and update a table configuration
      • Batch import example
      • Stream ingestion example
      • HDFS as Deep Storage
      • Troubleshooting Pinot
      • Frequently Asked Questions (FAQs)
        • General
        • Pinot On Kubernetes FAQ
        • Ingestion FAQ
        • Query FAQ
        • Operations FAQ
    • Import Data
      • From Query Console
      • Batch Ingestion
        • Spark
        • Flink
        • Hadoop
        • Backfill Data
        • Dimension table
      • Stream ingestion
        • Apache Kafka
        • Amazon Kinesis
        • Apache Pulsar
      • Stream Ingestion with Upsert
      • Segment compaction on upserts
      • Stream Ingestion with Dedup
      • Stream Ingestion with CLP
      • File Systems
        • Amazon S3
        • Azure Data Lake Storage
        • HDFS
        • Google Cloud Storage
      • Input formats
        • Complex Type (Array, Map) Handling
        • Ingest records with dynamic schemas
      • Reload a table segment
      • Upload a table segment
    • Indexing
      • Bloom filter
      • Dictionary index
      • Forward index
      • Geospatial
      • Inverted index
      • JSON index
      • Native text index
      • Range index
      • Star-tree index
      • Text search support
      • Timestamp index
    • Releases
      • 1.1.0
      • Apache Pinot™ 1.0.0 release notes
      • 0.12.1
      • 0.12.0
      • 0.11.0
      • 0.10.0
      • 0.9.3
      • 0.9.2
      • 0.9.1
      • 0.9.0
      • 0.8.0
      • 0.7.1
      • 0.6.0
      • 0.5.0
      • 0.4.0
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • Connect to Streamlit
      • Connect to Dash
      • Visualize data with Redash
      • GitHub Events Stream
  • For Users
    • Query
      • Querying Pinot
      • Query Syntax
        • Aggregation Functions
        • Cardinality Estimation
        • Explain Plan (Single-Stage)
        • Explain Plan (Multi-Stage)
        • Filtering with IdSet
        • GapFill Function For Time-Series Dataset
        • Grouping Algorithm
        • JOINs
        • Lookup UDF Join
        • Querying JSON data
        • Transformation Functions
        • Window aggregate
      • Query Options
      • User-Defined Functions (UDFs)
    • APIs
      • Broker Query API
        • Query Response Format
      • Controller Admin API
      • Controller API Reference
    • External Clients
      • JDBC
      • Java
      • Python
      • Golang
    • Tutorials
      • Use OSS as Deep Storage for Pinot
      • Ingest Parquet Files from S3 Using Spark
      • Creating Pinot Segments
      • Use S3 as Deep Storage for Pinot
      • Use S3 and Pinot in Docker
      • Batch Data Ingestion In Practice
      • Schema Evolution
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Update documentation
    • Advanced
      • Data Ingestion Overview
      • Ingestion Aggregations
      • Ingestion Transformations
      • Null value support
      • Use the multi-stage query engine (v2)
      • Troubleshoot issues with the multi-stage query engine (v2)
      • Advanced Pinot Setup
    • Plugins
      • Write Custom Plugins
        • Input Format Plugin
        • Filesystem Plugin
        • Batch Segment Fetcher Plugin
        • Stream Ingestion Plugin
    • Design Documents
      • Segment Writer API
  • For Operators
    • Deployment and Monitoring
      • Set up cluster
      • Server Startup Status Checkers
      • Set up table
      • Set up ingestion
      • Decoupling Controller from the Data Path
      • Segment Assignment
      • Instance Assignment
      • Rebalance
        • Rebalance Servers
        • Rebalance Brokers
      • Separating data storage by age
        • Using multiple tenants
        • Using multiple directories
      • Pinot managed Offline flows
      • Minion merge rollup task
      • Consistent Push and Rollback
      • Access Control
      • Monitoring
      • Tuning
        • Real-time
        • Routing
        • Query Routing using Adaptive Server Selection
        • Query Scheduling
      • Upgrading Pinot with confidence
      • Managing Logs
      • OOM Protection Using Automatic Query Killing
    • Command-Line Interface (CLI)
    • Configuration Recommendation Engine
    • Tutorials
      • Authentication
        • Basic auth access control
        • ZkBasicAuthAccessControl
      • Configuring TLS/SSL
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Monitor Pinot using Prometheus and Grafana
      • Performance Optimization Configurations
  • Configuration Reference
    • Cluster
    • Controller
    • Broker
    • Server
    • Table
    • Ingestion
    • Schema
    • Ingestion Job Spec
    • Monitoring Metrics
    • Functions
      • ABS
      • ADD
      • ago
      • EXPR_MIN / EXPR_MAX
      • arrayConcatDouble
      • arrayConcatFloat
      • arrayConcatInt
      • arrayConcatLong
      • arrayConcatString
      • arrayContainsInt
      • arrayContainsString
      • arrayDistinctInt
      • arrayDistinctString
      • arrayIndexOfInt
      • arrayIndexOfString
      • ARRAYLENGTH
      • arrayRemoveInt
      • arrayRemoveString
      • arrayReverseInt
      • arrayReverseString
      • arraySliceInt
      • arraySliceString
      • arraySortInt
      • arraySortString
      • arrayUnionInt
      • arrayUnionString
      • AVGMV
      • Base64
      • caseWhen
      • ceil
      • CHR
      • codepoint
      • concat
      • count
      • COUNTMV
      • COVAR_POP
      • COVAR_SAMP
      • day
      • dayOfWeek
      • dayOfYear
      • DISTINCT
      • DISTINCTAVG
      • DISTINCTAVGMV
      • DISTINCTCOUNT
      • DISTINCTCOUNTBITMAP
      • DISTINCTCOUNTHLLMV
      • DISTINCTCOUNTHLL
      • DISTINCTCOUNTBITMAPMV
      • DISTINCTCOUNTMV
      • DISTINCTCOUNTRAWHLL
      • DISTINCTCOUNTRAWHLLMV
      • DISTINCTCOUNTRAWTHETASKETCH
      • DISTINCTCOUNTTHETASKETCH
      • DISTINCTSUM
      • DISTINCTSUMMV
      • DIV
      • DATETIMECONVERT
      • DATETRUNC
      • exp
      • FIRSTWITHTIME
      • FLOOR
      • FrequentLongsSketch
      • FrequentStringsSketch
      • FromDateTime
      • FromEpoch
      • FromEpochBucket
      • FUNNELCOUNT
      • Histogram
      • hour
      • isSubnetOf
      • JSONFORMAT
      • JSONPATH
      • JSONPATHARRAY
      • JSONPATHARRAYDEFAULTEMPTY
      • JSONPATHDOUBLE
      • JSONPATHLONG
      • JSONPATHSTRING
      • jsonextractkey
      • jsonextractscalar
      • LASTWITHTIME
      • length
      • ln
      • lower
      • lpad
      • ltrim
      • max
      • MAXMV
      • MD5
      • millisecond
      • min
      • minmaxrange
      • MINMAXRANGEMV
      • MINMV
      • minute
      • MOD
      • mode
      • month
      • mult
      • now
      • percentile
      • percentileest
      • percentileestmv
      • percentilemv
      • percentiletdigest
      • percentiletdigestmv
      • percentilekll
      • percentilerawkll
      • percentilekllmv
      • percentilerawkllmv
      • quarter
      • regexpExtract
      • regexpReplace
      • remove
      • replace
      • reverse
      • round
      • ROW_NUMBER
      • rpad
      • rtrim
      • second
      • SEGMENTPARTITIONEDDISTINCTCOUNT
      • sha
      • sha256
      • sha512
      • sqrt
      • startswith
      • ST_AsBinary
      • ST_AsText
      • ST_Contains
      • ST_Distance
      • ST_GeogFromText
      • ST_GeogFromWKB
      • ST_GeometryType
      • ST_GeomFromText
      • ST_GeomFromWKB
      • STPOINT
      • ST_Polygon
      • strpos
      • ST_Union
      • SUB
      • substr
      • sum
      • summv
      • TIMECONVERT
      • timezoneHour
      • timezoneMinute
      • ToDateTime
      • ToEpoch
      • ToEpochBucket
      • ToEpochRounded
      • TOJSONMAPSTR
      • toGeometry
      • toSphericalGeography
      • trim
      • upper
      • Url
      • UTF8
      • VALUEIN
      • week
      • year
      • yearOfWeek
      • Extract
    • Plugin Reference
      • Stream Ingestion Connectors
      • VAR_POP
      • VAR_SAMP
      • STDDEV_POP
      • STDDEV_SAMP
  • Reference
    • Single-stage query engine (v1)
    • Multi-stage query engine (v2)
  • RESOURCES
    • Community
    • Team
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • Tableau
    • Trino
    • ThirdEye
    • Superset
    • Presto
    • Spark-Pinot Connector
  • Contributing
    • Contribute Pinot documentation
    • Style guide
Powered by GitBook
On this page
  • Syntax
  • Examples
  • Single-partition-key-column Example
  • Complex-partition-key-columns Example
  • Usage FAQ

Was this helpful?

Export as PDF
  1. For Users
  2. Query
  3. Query Syntax

Lookup UDF Join

For more information about using JOINs with the multi-stage query engine, see JOINs.

PreviousJOINsNextQuerying JSON data

Was this helpful?

Lookup UDF Join is only supported with the single-stage query engine (v1). For more information about using JOINs with the multi-stage query engine, see .

Lookup UDF is used to get dimension data via primary key from a dimension table allowing a decoration join functionality. Lookup UDF can only be used with in Pinot.

Syntax

The UDF function syntax is listed as below:

lookupUDFSpec:
    LOOKUP
    '('
    '''dimTable'''
    '''dimColToLookup'''
    [ '''dimJoinKey''', factJoinKey ]*
    ')'
  • dimTable Name of the dim table to perform the lookup on.

  • dimColToLookUp The column name of the dim table to be retrieved to decorate our result.

  • dimJoinKey The column name on which we want to perform the lookup i.e. the join column name for dim table.

  • factJoinKey The column name on which we want to perform the lookup against e.g. the join column name for fact table

Noted that:

  1. all the dim-table-related expressions are expressed as literal strings, this is the LOOKUP UDF syntax limitation: we cannot express column identifier which doesn't exist in the query's main table, which is the factTable table.

  2. the syntax definition of [ '''dimJoinKey''', factJoinKey ]* indicates that if there are multiple dim partition columns, there should be multiple join key pair expressed.

Examples

Here are some of the examples

Single-partition-key-column Example

Consider the table baseballStats

Column
Type

playerID

STRING

yearID

INT

teamID

STRING

league

STRING

playerName

STRING

playerStint

INT

numberOfGames

INT

numberOfGamesAsBatter

INT

AtBatting

INT

runs

INT

and dim table dimBaseballTeams

Column
Type

teamID

STRING

teamName

STRING

teamAddress

STRING

several acceptable queries are:

Dim-Fact LOOKUP example

SELECT 
  playerName, 
  teamID, 
  LOOKUP('dimBaseballTeams', 'teamName', 'teamID', teamID) AS teamName, 
  LOOKUP('dimBaseballTeams', 'teamAddress', 'teamID', teamID) AS teamAddress
FROM baseballStats 
playerName
teamID
teamName
teamAddress

David Allan

BOS

Boston Red Caps/Beaneaters (from 1876–1900) or Boston Red Sox (since 1953)

4 Jersey Street, Boston, MA

David Allan

CHA

null

null

David Allan

SEA

Seattle Mariners (since 1977) or Seattle Pilots (1969)

1250 First Avenue South, Seattle, WA

David Allan

SEA

Seattle Mariners (since 1977) or Seattle Pilots (1969)

1250 First Avenue South, Seattle, WA

Self LOOKUP example

SELECT 
  teamID, 
  teamName AS nameFromLocal,
  LOOKUP('dimBaseballTeams', 'teamName', 'teamID', teamID) AS nameFromLookup
FROM dimBaseballTeams
teamID
nameFromLocal
nameFromLookup

ANA

Anaheim Angels

Anaheim Angels

ARI

Arizona Diamondbacks

Arizona Diamondbacks

ATL

Atlanta Braves

Atlanta Braves

BAL

Baltimore Orioles (original- 1901–1902 current- since 1954)

Baltimore Orioles (original- 1901–1902 current- since 1954)

Complex-partition-key-columns Example

Consider a single dimension table with schema:

BILLING SCHEMA

Column
Type

customerId

INT

creditHistory

STRING

firstName

STRING

lastName

STRING

isCarOwner

BOOLEAN

city

STRING

maritalStatus

STRING

buildingType

STRING

missedPayment

STRING

billingMonth

STRING

Self LOOKUP example

select 
  customerId,
  missedPayment, 
  LOOKUP('billing', 'city', 'customerId', customerId, 'creditHistory', creditHistory) AS lookedupCity 
from billing
customerId
missedPayment
lookedupCity

341

Paid

Palo Alto

374

Paid

Mountain View

398

Paid

Palo Alto

427

Paid

Cupertino

435

Paid

Cupertino

Usage FAQ

  • The data return type of the UDF will be that of the dimColToLookUp column type.

  • when multiple primary key columns are used for the dimension table (e.g. composite primary key), ensure that the order of keys appearing in the lookup() UDF is the same as the order defined in the primaryKeyColumns from the dimension table schema.

JOINs
a dimension table