LogoLogo
release-0.4.0
release-0.4.0
  • Introduction
  • Basics
    • Concepts
    • Architecture
    • Components
      • Cluster
      • Controller
      • Broker
      • Server
      • Minion
      • Tenant
      • Table
      • Schema
      • Segment
    • Getting started
      • Frequent questions
      • Running Pinot locally
      • Running Pinot in Docker
      • Running Pinot in Kubernetes
      • Public cloud examples
        • Running on Azure
        • Running on GCP
        • Running on AWS
      • Manual cluster setup
      • Batch import example
      • Stream ingestion example
    • Data import
      • Stream ingestion
        • Import from Kafka
      • File systems
        • Import from ADLS (Azure)
        • Import from HDFS
        • Import from GCP
      • Input formats
        • Import from CSV
        • Import from JSON
        • Import from Avro
        • Import from Parquet
        • Import from Thrift
        • Import from ORC
    • Feature guides
      • Pinot data explorer
      • Text search support
      • Indexing
    • Releases
      • 0.3.0
      • 0.2.0
      • 0.1.0
    • Recipes
      • GitHub Events Stream
  • For Users
    • Query
      • Pinot Query Language (PQL)
        • Unique Counting
    • API
      • Querying Pinot
        • Response Format
      • Pinot Rest Admin Interface
    • Clients
      • Java
      • Golang
  • For Developers
    • Basics
      • Extending Pinot
        • Writing Custom Aggregation Function
        • Pluggable Streams
        • Pluggable Storage
        • Record Reader
        • Segment Fetchers
      • Contribution Guidelines
      • Code Setup
      • Code Modules and Organization
      • Update Documentation
    • Advanced
      • Data Ingestion Overview
      • Advanced Pinot Setup
    • Tutorials
      • Pinot Architecture
      • Store Data
        • Batch Tables
        • Streaming Tables
      • Ingest Data
        • Batch
          • Creating Pinot Segments
          • Write your batch
          • HDFS
          • AWS S3
          • Azure Storage
          • Google Cloud Storage
        • Streaming
          • Creating Pinot Segments
          • Write your stream
          • Kafka
          • Azure EventHub
          • Amazon Kinesis
          • Google Pub/Sub
    • Design Documents
  • For Operators
    • Basics
      • Setup cluster
      • Setup table
      • Setup ingestion
      • Access Control
      • Monitoring
      • Tuning
        • Realtime
        • Routing
    • Tutorials
      • Build Docker Images
      • Running Pinot in Production
      • Kubernetes Deployment
      • Amazon EKS (Kafka)
      • Amazon MSK (Kafka)
      • Batch Data Ingestion In Practice
  • RESOURCES
    • Community
    • Blogs
    • Presentations
    • Videos
  • Integrations
    • ThirdEye
    • Superset
    • Presto
  • PLUGINS
    • Plugin Architecture
    • Pinot Input Format
    • Pinot File System
    • Pinot Batch Ingestion
    • Pinot Stream Ingestion
Powered by GitBook
On this page
  • Pull Request Merged Events Stream
  • Steps
  • Using Docker images or Launcher Scripts
  • Kubernetes cluster
  • Query
  • Visualizing on SuperSet

Was this helpful?

Edit on Git
Export as PDF
  1. Basics
  2. Recipes

GitHub Events Stream

Steps for setting up a Pinot cluster and a realtime table which consumes from the GitHub events stream.

PreviousRecipesNextQuery

Last updated 4 years ago

Was this helpful?

Pull Request Merged Events Stream

In this recipe, we will

  1. Set up a Pinot cluster, in the steps

    a. Start zookeeper

    b. Start controller

    c. Start broker

    d. Start server

  2. Set up a Kafka cluster

  3. Create a Kafka topic - pullRequestMergedEvents

  4. Create a realtime table - pullRequestMergedEvents and a schema

  5. Start a task which reads from and publishes events about merged pull requests to the topic.

  6. Query the realtime data

Steps

Using Docker images or Launcher Scripts

Pull docker image

Get the latest Docker image.

export PINOT_VERSION=latest
export PINOT_IMAGE=apachepinot/pinot:${PINOT_VERSION}
docker pull ${PINOT_IMAGE}

Long Version

Set up the Pinot cluster

Follow the instructions in to setup the Pinot cluster with the components:

  1. Zookeeper

  2. Controller

  3. Broker

  4. Server

  5. Kafka

Create a Kafka topic

Create a Kafka topic called pullRequestMergedEvents for the demo.

docker exec \
  -t kafka \
  /opt/kafka/bin/kafka-topics.sh \
  --zookeeper pinot-zookeeper:2181/kafka \
  --partitions=1 --replication-factor=1 \
  --create --topic pullRequestMergedEvents

Add Pinot table and schema

The schema is present at examples/stream/githubEvents/pullRequestMergedEvents_schema.json and is also pasted below

pullRequestMergedEvents_schema.json
{
  "schemaName": "pullRequestMergedEvents",
  "dimensionFieldSpecs": [
    {
      "name": "title",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "labels",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "userId",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "userType",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "authorAssociation",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "mergedBy",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "assignees",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "authors",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "committers",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "requestedReviewers",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "requestedTeams",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "reviewers",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "commenters",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "repo",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "organization",
      "dataType": "STRING",
      "defaultNullValue": ""
    }
  ],
  "metricFieldSpecs": [
    {
      "name": "count",
      "dataType": "LONG",
      "defaultNullValue": 1
    },
    {
      "name": "numComments",
      "dataType": "LONG"
    },
    {
      "name": "numReviewComments",
      "dataType": "LONG"
    },
    {
      "name": "numCommits",
      "dataType": "LONG"
    },
    {
      "name": "numLinesAdded",
      "dataType": "LONG"
    },
    {
      "name": "numLinesDeleted",
      "dataType": "LONG"
    },
    {
      "name": "numFilesChanged",
      "dataType": "LONG"
    },
    {
      "name": "numAuthors",
      "dataType": "LONG"
    },
    {
      "name": "numCommitters",
      "dataType": "LONG"
    },
    {
      "name": "numReviewers",
      "dataType": "LONG"
    },
    {
      "name": "numCommenters",
      "dataType": "LONG"
    },
    {
      "name": "createdTimeMillis",
      "dataType": "LONG"
    },
    {
      "name": "elapsedTimeMillis",
      "dataType": "LONG"
    }
  ],
  "timeFieldSpec": {
    "incomingGranularitySpec": {
      "timeType": "MILLISECONDS",
      "timeFormat": "EPOCH",
      "dataType": "LONG",
      "name": "mergedTimeMillis"
    }
  }
}

The table config is present at examples/stream/githubEvents/docker/pullRequestMergedEvents_realtime_table_config.json and is also pasted below.

Note If you're setting this up on a pre-configured cluster, set the properties stream.kafka.zk.broker.url and stream.kafka.broker.list correctly, depending on the configuration of your Kafka cluster.

pullRequestMergedEvents_realtime_table_config.json
{
  "tableName": "pullRequestMergedEvents",
  "tableType": "REALTIME",
  "segmentsConfig": {
    "timeColumnName": "mergedTimeMillis",
    "timeType": "MILLISECONDS",
    "retentionTimeUnit": "DAYS",
    "retentionTimeValue": "60",
    "schemaName": "pullRequestMergedEvents",
    "replication": "1",
    "replicasPerPartition": "1"
  },
  "tenants": {},
  "tableIndexConfig": {
    "loadMode": "MMAP",
    "invertedIndexColumns": [
      "organization",
      "repo"
    ],
    "streamConfigs": {
      "streamType": "kafka",
      "stream.kafka.consumer.type": "simple",
      "stream.kafka.topic.name": "pullRequestMergedEvents",
      "stream.kafka.decoder.class.name": "org.apache.pinot.plugin.stream.kafka.KafkaJSONMessageDecoder",
      "stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
      "stream.kafka.zk.broker.url": "pinot-zookeeper:2181/kafka",
      "stream.kafka.broker.list": "kafka:9092",
      "realtime.segment.flush.threshold.time": "12h",
      "realtime.segment.flush.threshold.size": "100000",
      "stream.kafka.consumer.prop.auto.offset.reset": "smallest"
    }
  },
  "metadata": {
    "customConfigs": {}
  }
}

Add the table and schema using the following command

$ docker run \
    --network=pinot-demo \
    --name pinot-streaming-table-creation \
    ${PINOT_IMAGE} AddTable \
    -schemaFile examples/stream/githubEvents/pullRequestMergedEvents_schema.json \
    -tableConfigFile examples/stream/githubEvents/docker/pullRequestMergedEvents_realtime_table_config.json \
    -controllerHost pinot-controller \
    -controllerPort 9000 \
    -exec
Executing command: AddTable -tableConfigFile examples/stream/githubEvents/docker/pullRequestMergedEvents_realtime_table_config.json -schemaFile examples/stream/githubEvents/pullRequestMergedEvents_schema.json -controllerHost pinot-controller -controllerPort 9000 -exec
Sending request: http://pinot-controller:9000/schemas to controller: 20c241022a96, version: Unknown
{"status":"Table pullRequestMergedEvents_REALTIME succesfully added"}

Publish events

Start streaming GitHub events into the Kafka topic

Prerequisites

$ docker run --rm -ti \
    --network=pinot-demo \
    --name pinot-github-events-into-kafka \
    -d ${PINOT_IMAGE} StreamGitHubEvents \
    -schemaFile examples/stream/githubEvents/pullRequestMergedEvents_schema.json \
    -topic pullRequestMergedEvents \
    -personalAccessToken <your_github_personal_access_token> \
    -kafkaBrokerList kafka:9092

Short Version

For a single command to setup all the above steps, use the following command. Make sure to stop any previous running Pinot services.

$ docker run --rm -ti \
    --network=pinot-demo \
    --name pinot-github-events-quick-start \
     ${PINOT_IMAGE} GitHubEventsQuickStart \
    -personalAccessToken <your_github_personal_access_token>

Get Pinot

Long Version

Set up the Pinot cluster

  1. Zookeeper

  2. Controller

  3. Broker

  4. Server

  5. Kafka

Create a Kafka topic

Create a Kafka topic called pullRequestMergedEvents for the demo.

$ bin/kafka-topics.sh \
  --create \
  --bootstrap-server localhost:19092 \
  --replication-factor 1 \
  --partitions 1 \
  --topic pullRequestMergedEvents

Add Pinot table and schema

Schema can be found at /examples/stream/githubevents/ in the release, and is also pasted below:

{
  "schemaName": "pullRequestMergedEvents",
  "dimensionFieldSpecs": [
    {
      "name": "title",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "labels",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "userId",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "userType",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "authorAssociation",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "mergedBy",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "assignees",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "authors",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "committers",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "requestedReviewers",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "requestedTeams",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "reviewers",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "commenters",
      "dataType": "STRING",
      "singleValueField": false,
      "defaultNullValue": ""
    },
    {
      "name": "repo",
      "dataType": "STRING",
      "defaultNullValue": ""
    },
    {
      "name": "organization",
      "dataType": "STRING",
      "defaultNullValue": ""
    }
  ],
  "metricFieldSpecs": [
    {
      "name": "count",
      "dataType": "LONG",
      "defaultNullValue": 1
    },
    {
      "name": "numComments",
      "dataType": "LONG"
    },
    {
      "name": "numReviewComments",
      "dataType": "LONG"
    },
    {
      "name": "numCommits",
      "dataType": "LONG"
    },
    {
      "name": "numLinesAdded",
      "dataType": "LONG"
    },
    {
      "name": "numLinesDeleted",
      "dataType": "LONG"
    },
    {
      "name": "numFilesChanged",
      "dataType": "LONG"
    },
    {
      "name": "numAuthors",
      "dataType": "LONG"
    },
    {
      "name": "numCommitters",
      "dataType": "LONG"
    },
    {
      "name": "numReviewers",
      "dataType": "LONG"
    },
    {
      "name": "numCommenters",
      "dataType": "LONG"
    },
    {
      "name": "createdTimeMillis",
      "dataType": "LONG"
    },
    {
      "name": "elapsedTimeMillis",
      "dataType": "LONG"
    }
  ],
  "timeFieldSpec": {
    "incomingGranularitySpec": {
      "timeType": "MILLISECONDS",
      "timeFormat": "EPOCH",
      "dataType": "LONG",
      "name": "mergedTimeMillis"
    }
  }
}

Table config can be found at /examples/stream/githubevents/ in the release, and is also pasted below.

Note

If you're setting this up on a pre-configured cluster, set the properties stream.kafka.zk.broker.url and stream.kafka.broker.list correctly, depending on the configuration of your Kafka cluster.

{
  "tableName": "pullRequestMergedEvents",
  "tableType": "REALTIME",
  "segmentsConfig": {
    "timeColumnName": "mergedTimeMillis",
    "timeType": "MILLISECONDS",
    "retentionTimeUnit": "DAYS",
    "retentionTimeValue": "60",
    "schemaName": "pullRequestMergedEvents",
    "replication": "1",
    "replicasPerPartition": "1"
  },
  "tenants": {},
  "tableIndexConfig": {
    "loadMode": "MMAP",
    "invertedIndexColumns": [
      "organization",
      "repo"
    ],
    "streamConfigs": {
      "streamType": "kafka",
      "stream.kafka.consumer.type": "simple",
      "stream.kafka.topic.name": "pullRequestMergedEvents",
      "stream.kafka.decoder.class.name": "org.apache.pinot.plugin.stream.kafka.KafkaJSONMessageDecoder",
      "stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
      "stream.kafka.zk.broker.url": "localhost:2191/kafka",
      "stream.kafka.broker.list": "localhost:19092",
      "realtime.segment.flush.threshold.time": "12h",
      "realtime.segment.flush.threshold.size": "100000",
      "stream.kafka.consumer.prop.auto.offset.reset": "smallest"
    }
  },
  "metadata": {
    "customConfigs": {}
  }
}

Add the table and schema using the command

$ bin/pinot-admin.sh AddTable \
  -tableConfigFile $PATH_TO_CONFIGS/examples/stream/githubEvents/pullRequestMergedEvents_realtime_table_config.json \
  -schemaFile $PATH_TO_CONFIGS/examples/stream/githubEvents/pullRequestMergedEvents_schema.json \
  -exec

Publish events

Start streaming GitHub events into the Kafka topic

Prerequisites

$ bin/pinot-admin.sh StreamGitHubEvents \
  -topic pullRequestMergedEvents \
  -personalAccessToken <your_github_personal_access_token> \
  -kafkaBrokerList localhost:19092 \
  -schemaFile $PATH_TO_CONFIGS/examples/stream/githubEvents/pullRequestMergedEvents_schema.json

Short Version

For a single command to setup all the above steps

$ bin/pinot-admin.sh GitHubEventsQuickStart \
  -personalAccessToken <your_github_personal_access_token>

Kubernetes cluster

$ cd kubernetes/helm
$ kubectl apply -f pinot-github-realtime-events.yml

Query

Visualizing on SuperSet

You can use SuperSet to visualize this data. Some of the interesting insights we captures were

Most Active organizations during the lockdown

Repositories by number of commits in the Apache organization

Generate a on GitHub.

Follow instructions in to get the latest Pinot code

Follow the instructions in to setup the Pinot cluster with the components:

Download release.

Generate a on GitHub.

If you already have a Kubernetes cluster with Pinot and Kafka (see ), first create the topic and then setup the table and streaming using

Head over to the to checkout the data!

To integrate with SuperSet you can check out the page.

GitHub events API
Advanced Pinot Setup
personal access token
Build from source
Advanced Pinot Setup
Apache Kafka
personal access token
Running Pinot in Kubernetes
Query Console
SuperSet Integrations