Input formats

This section contains a collection of guides that will show you how to import data from a Pinot supported input format.

Pinot offers support for various popular input formats during ingestion. By changing the input format, you can reduce the time spent doing serialization-deserialization and speed up the ingestion.

Configuring input formats

The input format can be changed using the recordReaderSpec config in the ingestion job spec.

recordReaderSpec:
  dataFormat: 'csv'
  className: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReader'
  configClassName: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReaderConfig'
  configs: 
			key1 : 'value1'
			key2 : 'value2'

The config consists of the following keys:

  • dataFormat - Name of the data format to consume.

  • className - name of the class that implements the RecordReader interface. This class is used for parsing the data.

  • configClassName - name of the class that implements the RecordReaderConfig interface. This class is used the parse the values mentioned in configs

  • configs - Key value pair for format specific configs. This field can be left out.

Supported input formats

Pinot supports the multiple input formats out of the box. You just need to specify the corresponding readers and the associated custom configs to switch between the formats.

CSV

dataFormat: 'csv'
className: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReader'
configClassName: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReaderConfig'
configs:
	fileFormat: 'default' #should be one of default, rfc4180, excel, tdf, mysql
	header: 'columnName seperated by delimiter'
  delimiter: ','
  multiValueDelimiter: '-'

CSV Record Reader supports the following configs -

fileFormat - can be one of default, rfc4180, excel, tdf, mysql

header - header of the file. The columnNames should be seperated by the delimiter mentioned in the config

delimiter - The character seperating the columns

multiValueDelimiter - The character seperating multiple values in a single column. This can be used to split a column into a list.

Supported from 0.11 release - skipHeader - skip header record in the file. Boolean

ignoreEmptyLines - ignore empty lines instead of consuming them and filling with default values. Boolean

ignoreSurroundingSpaces - ignore spaces around column names and values. Boolean

quoteCharacter - single character that is being used for quotes in CSV files

recordSeparator - character used to seperate records in the input file. Default is \n or \r\n depending on the platform.

nullStringValue - string value the represents null in CSV files. Default is empty string.

Your CSV file may have raw text fields that cannot be reliably delimited using any character. In this case, explicitly set the multiValueDelimeter field to empty in the ingestion config. multiValueDelimiter: ''

AVRO

dataFormat: 'avro'
className: 'org.apache.pinot.plugin.inputformat.avro.AvroRecordReader'
configs:
    enableLogicalTypes: true

The Avro record reader converts the data in file to a GenericRecord. A java class or .avro file is not required. By default the avro record reader only supports primitive types. You can set enableLogicalTypes to true to enable support for rest of the avro data types.

We use the following conversion table to translate between avro and pinot data types. The conversions are done using the offical avro methods present in org.apache.avro.Conversions

Avro Data Type
Pinot Data Type
Comment

INT

INT

LONG

LONG

FLOAT

FLOAT

DOUBLE

DOUBLE

BOOLEAN

BOOLEAN

STRING

STRING

ENUM

STRING

BYTES

BYTES

FIXED

BYTES

MAP

JSON

ARRAY

JSON

RECORD

JSON

UNION

JSON

DECIMAL

BYTES

UUID

STRING

DATE

STRING

yyyy-MM-dd format

TIME_MILLIS

STRING

HH:mm:ss.SSS format

TIME_MICROS

STRING

HH:mm:ss.SSSSSS format

TIMESTAMP_MILLIS

TIMESTAMP

TIMESTAMP_MICROS

TIMESTAMP

JSON

dataFormat: 'json'
className: 'org.apache.pinot.plugin.inputformat.json.JSONRecordReader'

Thrift

dataFormat: 'thrift'
className: 'org.apache.pinot.plugin.inputformat.thrift.ThriftRecordReader'
configs:
	thriftClass: 'ParserClassName'

Thrift requires the generated class using .thrift file to parse the data. The .class file should be available in the Pinot's classpath. You can put the files in the lib/ folder of pinot distribution directory.

Parquet

dataFormat: 'parquet'
className: 'org.apache.pinot.plugin.inputformat.parquet.ParquetRecordReader'

Since 0.11.0 release, The Parquet record reader determines whether to use ParquetAvroRecordReader or ParquetNativeRecordReader to read records. The reader looks for parquet.avro.schema or avro.schema key in the parquet file footer and if present uses the Avro reader.

Users can however change the record reader manually in case of a misconfiguration.

dataFormat: 'parquet'
className: 'org.apache.pinot.plugin.inputformat.parquet.ParquetNativeRecordReader'

For the support of DECIMAL and other parquet native data types, always use ParquetNativeRecordReader

INT96

LONG

ParquetINT96 type converts nanoseconds

to Pinot INT64 type of milliseconds

INT64

LONG

INT32

INT

FLOAT

FLOAT

DOUBLE

DOUBLE

BINARY

BYTES

FIXED-LEN-BYTE-ARRAY

BYTES

DECIMAL

DOUBLE

ENUM

STRING

UTF8

STRING

REPEATED

MULTIVALUE/MAP (represented as MV

if parquet original type is LIST, then it is converted to MULTIVALUE column otherwise a MAP column.

For ParquetAvroRecordReader , you can refer to the Avro section above for the type conversions.

ORC

dataFormat: 'orc'
className: 'org.apache.pinot.plugin.inputformat.orc.ORCRecordReader'

ORC record reader supports the following data types -

ORC Data Type

Java Data Type

BOOLEAN

String

SHORT

Integer

INT

Integer

LONG

Integer

FLOAT

Float

DOUBLE

Double

STRING

String

VARCHAR

String

CHAR

String

LIST

Object[]

MAP

Map<Object, Object>

DATE

Long

TIMESTAMP

Long

BINARY

byte[]

BYTE

Integer

In LIST and MAP types, the object should only belong to one of the data types supported by Pinot.

Protocol Buffers

dataFormat: 'proto'
className: 'org.apache.pinot.plugin.inputformat.protobuf.ProtoBufRecordReader'
configs:
	descriptorFile: 'file:///path/to/sample.desc'

The reader requires a descriptor file to deserialize the data present in the files. You can generate the descriptor file (.desc) from the .proto file using the command -

protoc --include_imports --descriptor_set_out=/absolute/path/to/output.desc /absolute/path/to/input.proto

Last updated