arrow-left

All pages
gitbookPowered by GitBook
1 of 1

Loading...

Querying JSON data

To see how JSON data can be queried, assume that we have the following table:

We also assume that "jsoncolumn" has a Json Indexarrow-up-right on it. Note that the last two rows in the table have different structure than the rest of the rows. In keeping with JSON specification, a JSON column can contain any valid JSON data and doesn't need to adhere to a predefined schema. To pull out the entire JSON document for each row, we can run the query below:

id
jsoncolumn

"101"

"{"name":{"first":"daffy","last":"duck"},"score":101,"data":["a","b","c","d"]}"

102"

To drill down and pull out specific keys within the JSON column, we simply append the JsonPath expression of those keys to the end of the column name.

id
last_name
first_name
value

Note that the third column (value) is null for rows with id 106 and 107. This is because these rows have JSON documents that don't have a key with JsonPath $.data[1]. We can filter out these rows.

id
last_name
first_name
value

Certain last names (duck and mouse for example) repeat in the data above. We can get a count of each last name by running a GROUP BY query on a JsonPath expression.

jsoncolumn.name.last
count(*)

Also there is numerical information (jsconcolumn.$.id) embeded within the JSON document. We can extract those numerical values from JSON data into SQL and sum them up using the query below.

jsoncolumn.name.last
sum(jsoncolumn.score)

hashtag
JSON_MATCH and JSON_EXTRACT_SCALAR

Note that the JSON_MATCH function utilizes JsonIndex and can only be used if a JsonIndex is already present on the JSON column. As shown in the examples above, the second argument of JSON_MATCH operator takes a predicate. This predicate is evaluated against the JsonIndex and supports =, !=, IS NULL, or IS NOT NULL operators. Relational operators, such as >, <, >=, and

jsoncolumn.name.last
sum(jsoncolumn.score)

JSON_MATCH function also provides the ability to use wildcard * JsonPath expressions even though it doesn't support full JsonPath expressions.

last_name
total

While, JSON_MATCH supports IS NULL and IS NOT NULL operators, these operators should only be applied to leaf-level path elements, i.e the predicate JSON_MATCH(jsoncolumn, '"$.data[*]" IS NOT NULL') is not valid since "$.data[*]" does not address a "leaf" element of the path; however, "$.data[0]" IS NOT NULL') is valid since "$.data[0]" unambigously identifies a leaf element of the path.

JSON_EXTRACT_SCALAR does not utilize JsonIndex and therefore performs slower than JSON_MATCH which utilizes JsonIndex. However, JSON_EXTRACT_SCALAR supports a wider range for of JsonPath expressions and operators. To make the best use of fast index access (JSON_MATCH) along with JsonPath expressions (JSON_EXTRACT_SCALAR) you can combine the use of these two functions in WHERE clause.

hashtag
JSON_MATCH syntax

The second argument of the JSON_MATCH function is a boolean expression in string form. This section shows how to correctly write the second argument of JSON_MATCH. Let's assume we want to search a JSON array array data for values k and j. This can be done by the following predicate:

To convert this predicate into string form for use in JSON_MATCH, we first turn the left side of the predicate into an identifier by enclosing it in double quotes:

Next, the literals in the predicate also need to be enclosed by '. Any existing ' need to be escaped as well. This gives us:

Finally, we need to create a string out of the entire expression above by enclosing it in ':

Now we have the string representation of the original predicate and this can be used in JSON_MATCH function:

Table myTable:
  id        INTEGER
  jsoncolumn    JSON 

Table data:
101,{"name":{"first":"daffy"\,"last":"duck"}\,"score":101\,"data":["a"\,"b"\,"c"\,"d"]}
102,{"name":{"first":"donald"\,"last":"duck"}\,"score":102\,"data":["a"\,"b"\,"e"\,"f"]}
103,{"name":{"first":"mickey"\,"last":"mouse"}\,"score":103\,"data":["a"\,"b"\,"g"\,"h"]}
104,{"name":{"first":"minnie"\,"last":"mouse"}\,"score":104\,"data":["a"\,"b"\,"i"\,"j"]}
105,{"name":{"first":"goofy"\,"last":"dwag"}\,"score":104\,"data":["a"\,"b"\,"i"\,"j"]}
106,{"person":{"name":"daffy duck"\,"companies":[{"name":"n1"\,"title":"t1"}\,{"name":"n2"\,"title":"t2"}]}}
107,{"person":{"name":"scrooge mcduck"\,"companies":[{"name":"n1"\,"title":"t1"}\,{"name":"n2"\,"title":"t2"}]}}
SELECT id, jsoncolumn 
  FROM myTable

mickey

b

104

mouse

minnie

b

105

dwag

goofy

b

106

null

null

null

107

null

null

null

mickey

b

104

mouse

minnie

b

105

dwag

goofy

b

<=
are currently not supported. However, you can combine the use of
JSON_MATCH
and
JSON_EXTRACT_SCALAR
function (which supports
>
,
<
,
>=
, and
<=
operators) to get the necessary functinoality as shown below.

"{"name":{"first":"donald","last":"duck"},"score":102,"data":["a","b","e","f"]}

"103"

"{"name":{"first":"mickey","last":"mouse"},"score":103,"data":["a","b","g","h"]}

"104"

"{"name":{"first":"minnie","last":"mouse"},"score":104,"data":["a","b","i","j"]}"

"105"

"{"name":{"first":"goofy","last":"dwag"},"score":104,"data":["a","b","i","j"]}"

"106"

"{"person":{"name":"daffy duck","companies":[{"name":"n1","title":"t1"},{"name":"n2","title":"t2"}]}}"

"107"

"{"person":{"name":"scrooge mcduck","companies":[{"name":"n1","title":"t1"},{"name":"n2","title":"t2"}]}}"

101

duck

daffy

b

102

duck

donald

b

103

101

duck

daffy

b

102

duck

donald

b

103

"mouse"

"2"

"duck"

"2"

"dwag"

"1"

"mouse"

"207"

"dwag"

"104"

"duck"

"203"

"mouse"

"207"

"dwag"

"104"

"duck"

"102"

mouse

mouse

SELECT id,
       json_extract_scalar(jsoncolumn, '$.name.last', 'STRING', 'null') last_name,
       json_extract_scalar(jsoncolumn, '$.name.first', 'STRING', 'null') first_name
       json_extract_scalar(jsoncolumn, '$.data[1]', 'STRING', 'null') value
  FROM myTable
SELECT id,
       json_extract_scalar(jsoncolumn, '$.name.last', 'STRING', 'null') last_name,
       json_extract_scalar(jsoncolumn, '$.name.first', 'STRING', 'null') first_name,
       json_extract_scalar(jsoncolumn, '$.data[1]', 'STRING', 'null') value
  FROM myTable
 WHERE JSON_MATCH(jsoncolumn, '"$.data[1]" IS NOT NULL')
  SELECT json_extract_scalar(jsoncolumn, '$.name.last', 'STRING', 'null') last_name,
         count(*)
    FROM myTable
   WHERE JSON_MATCH(jsoncolumn, '"$.data[1]" IS NOT NULL')
GROUP BY json_extract_scalar(jsoncolumn, '$.name.last', 'STRING', 'null')
ORDER BY 2 DESC
  SELECT json_extract_scalar(jsoncolumn, '$.name.last', 'STRING', 'null') last_name,
         sum(json_extract_scalar(jsoncolumn, '$.id', 'INT', 0)) total
    FROM myTable
   WHERE JSON_MATCH(jsoncolumn, '"$.name.last" IS NOT NULL')
GROUP BY json_extract_scalar(jsoncolumn, '$.name.last', 'STRING', 'null')
  SELECT json_extract_scalar(jsoncolumn, '$.name.last', 'STRING', 'null') last_name,
         sum(json_extract_scalar(jsoncolumn, '$.id', 'INT', 0)) total
    FROM myTable
   WHERE JSON_MATCH(jsoncolumn, '"$.name.last" IS NOT NULL') AND json_extract_scalar(jsoncolumn, '$.id', 'INT', 0) > 102
GROUP BY json_extract_scalar(jsoncolumn, '$.name.last', 'STRING', 'null')
  SELECT json_extract_scalar(jsoncolumn, '$.name.last', 'STRING', 'null') last_name,
         json_extract_scalar(jsoncolumn, '$.id', 'INT', 0) total
    FROM myTable
   WHERE JSON_MATCH(jsoncolumn, '"$.data[*]" = ''f''')
GROUP BY json_extract_scalar(jsoncolumn, '$.name.last', 'STRING', 'null')
data[0] IN ('k', 'j')
"data[0]" IN ('k', 'j')
"data[0]" IN (''k'', ''j'')
'"data[0]" IN (''k'', ''j'')'
   WHERE JSON_MATCH(jsoncolumn, '"data[0]" IN (''k'', ''j'')')