Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
This page contains guides related to importing data from Apache Kafka using stream ingestion.
Loading...
This section contains a collection of short guides to show you how to import from a Pinot supported file system.
Loading...
Loading...
Loading...
This section contains a collection of guides that will show you how to import data from a Pinot supported input format.
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
This section contains articles that provide technical and implementation details of Pinot features
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Here you will find a collection of ready-made sample applications and examples for real-world data
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Cluster is a set a nodes comprising of servers, brokers, controllers and minions.
Pinot leverages Apache Helix for cluster management. Helix is a cluster management framework to manage replicated, partitioned resources in a distributed system. Helix uses Zookeeper to store cluster state and metadata.
Briefly, Helix divides nodes into three logical components based on their responsibilities
The nodes that host distributed, partitioned resources
The nodes that observe the current state of each Participant and use that information to access the resources. Spectators are notified of state changes in the cluster (state of a participant, or that of a partition in a participant).
The node that observes and controls the Participant nodes. It is responsible for coordinating all transitions in the cluster and ensuring that state constraints are satisfied while maintaining cluster stability.
Pinot Servers are modeled as Participants, more details about server nodes can be found in Server. Pinot Brokers are modeled as Spectators, more details about broker nodes can be found in Broker. Pinot Controllers are modeled as Controllers, more details about controller nodes can be found in Controller.
Another way to visualize the cluster is a logical view, wherein a cluster contains tenants, tenants contain tables, and tables contain segments.
Typically, there is only cluster per environment/data center. There is no needed to create multiple Pinot clusters since Pinot supports the concept of tenants. At LinkedIn, the largest Pinot cluster consists of 1000+ nodes.
To setup a Pinot cluster, we need to first start Zookeeper.
Create an isolated bridge network in docker
Start Zookeeper in daemon.
Start ZKUI to browse Zookeeper data at http://localhost:9090.
Download Pinot Distribution using instructions in Download
Install zooinspector to view the data in Zookeeper, and connect to localhost:2181
Once we've started Zookeeper, we can start other components to join this cluster. If you're using docker, pull the latest apachepinot/pinot
image.
You can try out pre-built Pinot all-in-one docker image.
(Optional) You can also follow the instructions here to build your own images.
To start other components to join the cluster
Explore your cluster via Pinot Data Explorer
The Pinot Controller is responsible for a number of things
Controllers maintain the global metadata (e.g. configs and schemas) of the system with the help of Zookeeper which is used as the persistent metadata store.
Controllers host Helix Controller and is responsible for managing other pinot components (brokers, servers, minions)
They maintain the mapping of which servers are responsible for which segments. This mapping is used by the servers, to download the portion of the segments that they are responsible for. This mapping is also used by the broker to decide which servers to route the queries to.
Controller has admin endpoints for viewing, creating, updating and deleting configs which help us manage and operate the cluster.
Controllers also have endpoints for segment uploads which are used in offline data pushes. They are responsible for initializing realtime consumption and coordination of persisting the realtime segments into the segment store periodically.
They undertake other management activities such as managing retention of segments, validations.
There can be multiple instances of Pinot controller for redundancy. If there are multiple controllers, Pinot expects that all of them are configured with the same back-end storage system so that they have a common view of the segments (e.g. NFS). Pinot can use other storage systems such as HDFS or ADLS.
Make sure you've setup Zookeeper. If you're using docker, make sure to pull the pinot docker image. To start a controller
Brokers are the components that handle Pinot queries. They accept queries from clients and forward them to the right servers. They collect results back from the servers and consolidate them into a single response, to sent it back to the client.
Pinot Brokers are modeled as Spectators. They need to know the location of each segment of a table (and each replica of the segments) and route requests to the appropriate server that hosts the segments of the table being queried. The broker ensures that all the rows of the table are queried exactly once so as to return correct, consistent results for a query. The brokers may optimize to prune some of the segments as long as accuracy is not sacrificed. Helix provides the framework by which spectators can learn the location in which each partition of a resource (i.e. participant) resides. The brokers use this mechanism to learn the servers that host specific segments of a table.
In case of hybrid tables, the brokers ensure that the overlap between realtime and offline segment data is queried exactly once, by performing offline and realtime federation. Let's take this example, we have realtime data for 5 days - March 23 to March 27, and offline data has been pushed until Mar 25, which is 2 days behind realtime. The brokers maintain this time boundary.
Suppose, we get a query to this table : select sum(metric) from table
. The broker will split the query into 2 queries based on this time boundary - one for offline and one for realtime. This query becomes - select sum(metric) from table_REALTIME where date >= Mar 25
and
select sum(metric) from table_OFFLINE where date < Mar 25
The broker then merges results from both these queries before returning back to the client.
Make sure you've . If you're using docker, make sure to . To start a broker